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Abstract
Compilers are tools that typically translate a high­level language to a lower­level language.
This thesis delves into the process of designing and developing a compiler back­end that
targets WebAssembly (Wasm). The front­end is reused from an existing implementation.
The source language used by the compiler is called Hygge. The main objective of the the­
sis is to generate valid WebAssembly code. The generated code is furthermore optimized
with various techniques to produce smaller, more efficient executables. The compiler that
utilizes the proposed WebAssembly back­end is named HyggeWasm.

HyggeWasm supports a comprehensive set of language features, including conditional
statements, pattern matching, recursive functions, closures, loops, arrays, and structs.
Moreover, it offers several memory modes, including one that enables garbage collection
and two system interfaces, where one enables universally executable binaries. Further­
more, does HyggeWasm support two different writing styles of WebAssembly.

The project has achieved its objectives with success and has been thoroughly tested with
a considerable test suite.
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1 Introduction
Compilers are essential tools designed to translate a source language into a target lan­
guage, typically translating from a higher­level language to a lower­level language. Com­
pilers allow software engineers, computer scientists, and developers to write programs in
high­level languages. Programs written in a high­level language are far easier for humans
to read and understand than low­level machine instructions or byte code. This allows pro­
grammers to solve problems on a higher abstraction level and hide unnecessary details,
thus significantly simplifying the development process.

Compiler construction is the study of designing, building, and implementing compilers.
Compiler construction is a very successful branch of computer science, partly because it
is a very well­defined problem within the field of computer science[1, p. 4]. As a software
engineer, the motivation for studying compiler construction can be many. One reason
may be that understanding how a programming language is implemented and relates to
low­level instructions will allow them to write better and more efficient code.

The primary objective of this thesis is to design and implement a compiler back­end tar­
geting WebAssembly (abbreviated Wasm). A programming language called Hygge will
be the source language of the compiler. Hygge is a high­level programming language uti­
lized in teaching compiler construction at DTU. To streamline the process, the preceding
stages of the compilation related to the front­end of the compiler, which originate from an
existing compiler called Hyggec, will be repurposed. Originally, Hyggec featured a back­
end that generated code for a register­based Instruction Set Architecture (ISA) known as
RISC­V [2]. Further details will be expounded upon in Chapter 2.

The motivation for using WebAssembly in this project is that it fundamentally differs from
RISC­V [3], which will be a considerable challenge when designing the new back­end.
Moreover, WebAssembly is a relatively new technology that is evolving fast. WebAssem­
bly’s efficiency and performance, combined with its integration with existing web tech­
nologies, make it a technology that can unlock many new applications and innovations
of the web[4][5]. Given these promising prospects, numerous compilers have added We­
bAssembly as a target language since its creation.The details of WebAssembly and how
it differs from RISC­V will be described in section 2.2.

A secondary objective of the project is to utilize its discoveries to teach students about
compiler design principles and code generation for modern stack­based assembly lan­
guage. This has influenced the design of the compiler back­end and the project as a
whole. One notable impact of this is that the back­end produces a human­readable tex­
tual format, known as WebAssembly Text Format (WAT), rather than the binary format of
WebAssembly. Furthermore, this lead to the development of an educational tool. The
educational tool allows users to easily load, execute, and debug a binary WebAssembly
module in a web browser alongside a runtime to handle Input/Output (I/O) and memory
allocation.

1.1 Prior Knowledge
The compiler will be implemented in F#[6]; therefore, it will be a great advantage if the
reader is familiar with functional programming and concepts related to functional pro­
gramming. The reader does not need prior knowledge of WebAssembly, as this will be
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described in detail. However, the reader is assumed to be familiar with compiler construc­
tion and programming language design.
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1.2 Outline
Chapter 1 ­ Introduction:
The rest of the Introduction will address the project’s goal as a set of objectives.

Chapter 2 ­ Background:
Background provides the context and research foundation, including the core understand­
ing of WebAssembly and the source language Hygge.

Chapter 3 ­ Design:
Design focuses primarily on general design of the compiler and techniques used in code
generation. Additionally, design of memory layout, operation modes of the compiler, and
of the WAT Generation Freamework (WGF) intermediate representation (IR) will also be
described in this section.

Chapter 4 ­ Implementation:
Implementation delves into implementation details, illustrated with examples of both source
code and the produced target code.

Chapter 5 ­ Bringing garbage collection to HyggeWasm:
The chapter details how Garbage Collection is enabled in a separate operation mode
using a new memory model along with new WebAssembly primitives.

Chapter 6 ­ Optimizations:
Optimizations examines what optimizations can be applied to the Intermediate Represen­
tation (IR) to produce more effective code and how this is implemented in practice.

Chapter 7 ­ Evaluation:
Evaluation assesses the impact of the optimization phase on the generated code.

Chapter 8 ­ Future work:
Future work outlines the project’s future work, including potential improvements and known
issues.

Chapter 9 ­ Conclusion:
Conclusion summarizes the primary findings and results of the project, providing a concise
overview of what has been achieved. This will be held up against the problem statement
described in Section 1.3.
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1.3 Problem statement
The problem addressed by this thesis is formulated as the questions below. Chapter 9
will evaluate the extent to which they have been addressed.

P1 How can high­level programming language features of Hygge be synthesized to the
low­level constructs found in the target language of WebAssembly (Wasm)?

P2 Are there any specific limitations or challenges in the Hygge­to­Wasm compilation
process, and what are the potential solutions or workarounds?

P3 How can the WebAssembly code be optimized, and how does the optimized code
compare to the non­optimized version?

1.4 Methodology
At the project’s beginning, it was carefully considered which technologies would be used
for the compiler, including the choice of programming language. The original hygge com­
piler was written in the functional programming language F#. The implementation was
fairly easy to understand and thus also to extend. Hence, it was deemed unnecessary
to change the implementation language. Additionally, F# is particularly well­suited for im­
plementing interpreters and compilers due to its strong type system and pattern­matching
capabilities[7, p. VI]. These features allow for a more concise and clear implementation
compared to languages lacking such attributes.

For this project, the practices of Test­Driven Development (TDD) were utilized. Tests were
written before implementing new features, ensuring that introducing new features did not
break any existing features. Each language feature has been developed incrementally
during the implementation, with each iteration building upon the previous foundation. The
Learning and Development tool has been used to assess the compiled code and therefore
has been vital in the project’s implementation phase. Section 3.1 will address the Learning
and Development tool.
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2 Background
This section will present the background of the thesis by examining the source language,
Hygge and the target language,WebAssembly.

2.1 Introduction to the Hygge programming language
TheHygge programming language is the source language of the Hygge compiler,HyggeC.
Hygge is designed by Alceste Scalas for educational purposes. The language is used in
the graduate­level Compiler Construction course at DTU. In the course, an initial version
of a Hygge compiler was provided called Hygge0. It supplied some basic functionality that
the students could then extend through the course. Such an extended version of HyggeC
serves as the starting point of this project.

2.1.1 Phases of the Hygge compiler
Multiple phases are involved in Hyggec, which are represented in Figure 2.1. The front­
end of Hyggec includes the phases of Lexing, Parsing, and Type Checking.

Source
Program Lexing Token stream

Parsing
Abstract

syntax tree
(AST)

Type checking

Code generation
Type

annotated
AST

Target
program

Figure 2.1: Phases of the Hygge compiler

This thesis reuses the front­end of HyggeC. The back­end is completely reimplemented
to synthesize WebAssembly.

The first phase called lexing, produces a stream of individual tokens based on the raw text
input[1, p. 1­20]. The token stream is then forwarded to the parser phase that produces an
Abstract Syntax Tree (AST). The lexer and parser are automatically generated inHyggeC.
The lexer is generated based on definitions of the individual tokens used while parser is
based on a Context­Free Grammar (CFG). The CFG describes how a syntactically valid
program is formed[1, p. 8].

After this, type checking is performed. Type checking verifies and enforces type con­
straints of the program. This phase results in a type annotated AST. The type annotated
AST is the input of the code generation phase. The code generation phase synthesizes
the target language. HyggeC produced RISC­V assembly. This thesis will focus on re­
constructing the code generation phase to fit a new target language.
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Appendix A.1 contains all language features of this new version of the Hygge compiler,
from here on denoted as HyggeWasm. The language features were picked during the
project’s planning phase andwere constructed as a requirement specification in theMoSCoW
format.

2.1.2 Syntax of Hygge
In Hygge, a program consists of only one expression that subsequently can hold sub­
expressions. Hygge is, therefore, expression­oriented and has no distinction between
statements and expressions. This style is often used for functional languages, where
most imperative languages distinguish between expressions and statements and have
different rules about how the two can be used. The syntax of Hygge is inspired by the ML
family of languages [7, p. 8] and is therefore comparable to the syntax found in languages
like F# and Scala. A simple example of a Hygge program can be seen in code snippet
2.2. Multiple examples of Hygge programs are shown in section 2.1.5. Hygge’s formal
syntax specification can be found in the course notes 02247 ­ Compiler Construction [8]
and Appendix K.

1 // declare n as an integer and assign it the value 16
2 let n: int = 16;
3 // function to calculate the nth term of the Fibonacci sequence
4 fun fibRec(n: int): int = {
5 if (n <= 1) then {
6 n
7 }
8 else {
9 fibRec(n - 1) + fibRec(n - 2)

10 }
11 };
12 // print the result
13 println("The 16th term of the Fibonacci sequence is:");
14 println(fibRec(n))

Figure 2.2: Recursive function to calculate the nth term of the Fibonacci sequence

2.1.3 Type system
Hygge is a statically and strongly typed language and provides a rather basic typing sys­
tem with subtyping. Hygge has primitive types such as unit, int, bool, and float. It also
includes composite data types like strings, structs, tuples, unions, and arrays. Hygge
programs can contain type declarations that can be type aliases or define composite data
types. The type system uses structural typing as found in languages like TypeScript[9]
when evaluating structs. A structural type system considers only the members of a type
when comparing types. Functions can have multiple arguments but only one return value
and are treated as first­class values that can be passed around and returned.

2.1.4 From Hygge program to type annotated AST
This section clarifies the relationship between the Hygge source program and a type­
annotated AST. The code generation uses the type­annotated AST to create the target
program. The type­annotated AST is therefore critical to comprehend to understand the
content of this thesis.

To understand this, let’s consider the example 2.3, which shows a simple Hygge program
that asserts that 4 + 5 equals 9. The type­annotated AST depicted in Figure 2.4 is the
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result of the compiler’s processing of the input program illustrated in 2.3.

1 assert(4 + 5 = 9)

Figure 2.3: Simple assert program

The root node is the Assertion derived from the assert function invocation being the top­
level expression of the program. The Assertion-node has the type of unit since the built­
in assert function does not evaluate to a value. The assert function takes an argument;
in this case, the argument consists of the expression 4 + 5 = 9. Equality wraps around
the addition in this expression, resulting in a node Eq. The Eq node has a right and left
side and evaluates to a boolean value; the right side holds the integer value 9, and the
left holds the addition of 4 and 5. The leaf nodes marked with yellow are all literal values.

arg

Assertion
type: unit

rhslhs

Eq
type: bool

literal int 9
type: int

lhs rhs

Add
type: int

literal int 4
type: int

literal int 5
type: int

Figure 2.4: Exsample of the type annotated AST

2.1.5 Examples of Hygge programs
To exemplify the characteristics of the Hygge programming language, this section will
present concise examples of programs utilizing the inherent features of Hygge.

2.1.5.1 Exemplifying closures, functions and structures
Example 2.5 is a Hygge program that implements an elementary calculator. A type dec­
laration of the struct return by the makeCal function is created called Cal. The Cal struct
contains four function pointers in this example. Each function pointer references to an
anonymous function that performs an arithmetic operation between the res variable and an
input variable, v. Each anonymous function is defined directly inside the returned struct.
These functions capture their lexical environment and enclose the variable res; thus, the
returned functions operate on the same encapsulated state in the makeCal function.
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1 type Cal = struct {add: (int) -> int; // type declaration of 'Cal'
2 sub: (int) -> int;
3 mul: (int) -> int;
4 div: (int) -> int};
5
6 fun makeCal(): Cal = {
7 let mutable res: int = 0;
8 // return structure with the anonymous functions
9 struct { add = fun (v: int) -> { res <- res + v };

10 sub = fun (v: int) -> { res <- res - v };
11 mul = fun (v: int) -> { res <- res * v };
12 div = fun (v: int) -> { res <- res / v } } : Cal
13 };
14
15 let c1: Cal = makeCal(); // creating first function instance
16 assert(c1.add(2) = 2); // do calculations with anonymous functions
17 assert(c1.add(4) = 6);
18 assert(c1.mul(2) = 12);
19
20 let c2: Cal = makeCal(); // creating second function instance
21 assert(c2.add(10) = 10);
22 assert(c2.div(2) = 5);
23 assert(c2.sub(2) = 3)

Figure 2.5: Implementation of Calculator in Hygge, using a closure capture state

makeCal is called in line 15, effectively creating a function instance. The functions of the
returned structure are accessed and invoked with the dot notation, subsequently changing
the count variable of that closure.

Then, in line 20, makeCal is called again, making a new function instance that exists
independently of the other function instance.

2.1.5.2 Recursive function, mutable variables and arrays
Example 2.7 is a Hygge program that implements the recursive sorting algorithm Quick
sort, showcasing Hygge’s feature of recursive function declarations and recursive function
calls. The Quick sort algorithm operates on an array of integer values, and Hygge has
common capabilities of working with arrays. These can be seen in Table 2.6.

Hygge also supplies conditional statements and loop statements in the varieties for, while,
and do­while. Variables are immutable unless declared mutable with the keyword as part
of the let binder, similar to F#.

Array Operation Expression
Array constructor array(length, initial data)
Access data at an index arrayElem(array reference, index)
Assigning a value to an
element

arrayElem(array reference, index)← new value

Obtain the length of an
array

arrayLength(array reference)

Figure 2.6: Array operations
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1 fun partition (arr: array{int}, low: int, high: int): int = {
2 // Choose the rightmost element as the pivot
3 let pivot: int = arrayElem(arr, high);
4
5 // Index of the smaller element
6 let mutable i: int = low - 1;
7 let mutable j: int = 0;
8
9 for (j <- low; j < high; j++) {

10 // If the current element is smaller than or equal to the pivot
11 if (arrayElem(arr, j) <= pivot)
12 then {
13 // Swap arr[i] and arr[j]
14 i <- i + 1;
15 let temp: int = arrayElem(arr, i);
16 arrayElem(arr, i) <- arrayElem(arr, j);
17 arrayElem(arr, j) <- temp;
18 ()
19 }
20 else {()}
21 };
22
23 // Swap arr[i+1] and arr[high] (pivot)
24 let temp: int = arrayElem(arr, i + 1);
25 arrayElem(arr, i + 1) <- arrayElem(arr, high);
26 arrayElem(arr, high) <- temp;
27
28 // Return the pivot index
29 i + 1
30 };
31
32 fun quickSort(arr: array{int}, low: int, high: int): unit = {
33 if (low < high)
34 then {
35 // Partition the array and get the pivot index
36 let pivotIndex: int = partition(arr, low, high);
37
38 // Recursively sort the subarrays on both sides of the pivot
39 quickSort(arr, low, pivotIndex - 1);
40 quickSort(arr, pivotIndex + 1, high);
41 ()
42 }
43 else {()}
44 };

Figure 2.7: Quick sort implemented in Hygge

2.2 Introduction to WebAssembly
WebAssembly is a low­level bytecode format designed for efficient execution on the web,
providing a platform­independent runtime environment. WebAssembly has gradually evolved
since it was first announced in 2015, and it was later released as an Minimum Viable
Product (MVP) in 2017 [10][11]. At this point, version 1.0 of WebAssembly has been im­
plemented in all major browser engines[12], and the WebAssembly specification version
2.0 is being drafted[13]. WebAssembly is intended to be an effective compilation target
for source languages like C++, Rust, and Assemblyscript [14]. Considering this, together
with its high efficiency, WebAssembly opens a range of new opportunities in web devel­
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opment.

Rust

Assemblyscript

C++

GoLang

Wasm VM

X86

ARM

Compiler
toolchains

Wasm Module

Figure 2.8: High­level architecture of WebAssembly framework

The WebAssembly bytecode is an intermediate language for a stack­based Virtual Ma­
chine (VM). The machine code is later produced by the VM based on the host system’s
hardware. The VM can either produce themachine code at runtimewith a just­in­time (JIT)
compiler or ahead­of­time (AOT), producing a file with the machine code itself, typically
with a ’.cwasm’ extension. Figure 2.8 shows a top­level architecture of this.

2.2.1 WebAssembly design goals
TheWebAssembly ISA was designed to take advantage of common hardware capabilities
to deliver near­native execution speeds on a wide range of platforms. WebAssembly is
defined formally to make it easy to reason about its behavior and subsequently adopted
as a compilation target. As the name implies, Wasm is designed to execute and integrate
with existing web platforms[15].

WebAssembly allows web developers to offload compute­intensive tasks to the VM while
integrating fairly easily with JavaScript. WebAssembly also has applications outside the
web. It can be executed in a memory­safe, sandboxed environment and is ideal for ex­
ecuting untrusted code[16], making it impossible for the untrusted code to access unau­
thorized data.

2.2.2 Existing compiler toolchains for WebAssembly
Two of the most used compiler toolchains for WebAssembly are Emscripten[17] and Bi­
naryen[18].

Emscripten can compile languages using LLVM to WebAssembly. It generates out­
puts compatible with web environments and various WebAssembly runtimes. When Em­
scripten compiles for a web­based environment, it produces a binary WebAssembly mod­
ule alongside a JavaScript file. The JavaScript bundle bridges the gap between APIs
found in the source language that the host system must address due to the limitations of
WebAssembly. Emscripten can also produce standalone Wasm modules.

Binaryen is a compiler and toolchain infrastructure library designed for WebAssembly.
Binaryen is the toolchain behind languages like Grain[19] and AssemblyScript[20]. The
latter has been a great source of inspiration for the project because it produces fairly
compact Wasm modules that are easier to analyze and understand. This is because
many languages compile extensive runtimes into the modules.

This project draws inspiration from both of these compiler toolchains. The rest of the
report will occasionally refer to specific features inspired by the two toolchains.
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2.2.3 WebAssembly data types
WebAssembly has four numeric value types: i32 (32­bit integer), i64 (64­bit integer), f32
(32­bit floating point) and f64 (64­bit floating point).

Integer values are not inherently signed or unsigned[21]. Instead, the bits are interpreted
based on the instructions used on the values. Furthermore, Wasm provides a vector type
that can be used with single instruction multiple data (SIMD) operations and two reference
types, funcref, to reference functions and externref external data structures. This project
uses only the 32­bit instructions of the ISA. More on this can be found in section 3.3.2.

The type funcref represents the infinite union of all references to functions, irrespective of
their specific function types. The type externref denotes the infinite union of all references
to objects held by the embedding environment. Objects can be passed intoWebAssembly
as this type. Reference types are opaque, indicating that their size and bit pattern remain
unobservable.

2.2.4 Core concepts
In this section, we will explore some fundamental concepts of WebAssembly.
2.2.4.1 Traps
Certain instructions may trigger a trap during program execution, resulting in the imme­
diate termination of the program. Traps are not manageable within WebAssembly code.
However, they are communicated to the external host environment, where they can be
handled.
2.2.4.2 Embedding environment
A WebAssembly module will always run embedded inside a host system since it runs in a
VM. This could, for example, be aweb browser or non­web environment, such as a server­
side application. The terms embedding environment, host environment, or embedder, will
be used interchangeably to refer to this host system running the WebAssembly VM.
2.2.4.3 Linear memory model
WebAssembly uses a linear memory model[22]. Therefore, the memory of a module is
referred to as the linear memory. The linear memory is a mutable array of raw bytes.
linear memory is divided into pages with the size of 64KiB. WebAssembly presently only
allows for 32­bit addressing, meaning that the maximum amount a module can allocate
is, 216 × 64KiB = 4GiB bytes[23]. The memory has an initial size defined in the module
but can be grown at runtime. Memory access outside the bounds of the memory will
trigger a trap that will end program execution. Memory can, if exported, be accessed and
manipulated by the embedder. When inspecting this from JavaScript, it will be represented
as an ArrayBuffer [23].

2.2.5 Semantic phases
The semantics ofWebAssembly can be split into three distinct phases. TheWebAssembly
specification outlines the phases in detail.[13, p. 4]

1. Decoding:
In the decoding phase, the binary modules are translated into their corresponding
abstract syntax, forming an internal representation of the module.

2. Validation:
This phase examines various conditions to guarantee the module is well­formed.
If all conditions are satisfied, the module can be considered valid. Notably, it con­
ducts checks such as type validation of functions and control structures, and the
sequences of instructions within these structures.

A crucial aspect of this validation is confirming the operand stack is consistent.
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3. Execution:
Only a valid module can be executed. Execution can be further separated into two
phases:

a. Instantiation:
A module instance represents a module, enclosing an internal state and an ac­
tive execution stack. This process involves initializing global variables, memo­
ries, and tables. The module can also involve invoking a start function if spec­
ified in the module. Finally, the instantiation returns the instances of the mod­
ule’s exported components.

b. Invocation:
WebAssembly code can be executed when instantiating a module or invoking
an exported function. Instantiation of a module and the invocation of functions
are done by the embedding environment.

2.2.6 Anatomy of a WebAssembly program
AWebAssembly program consists of a module. The module is split into multiple sections.
The module can be represented in the textual format WAT or as binary. As the back­end
produces WAT, this section examines the module in this format. All sections of a WAT
module are shown in Table 2.1.

Section Description

Type Declares function signatures
Import Declares imports

Function Functions in the module
Table Used for indirection by storing references
Memory Linear memory for the module
Global Declaration of global variables
Export All exported functions to the host
Start Index to the function to be invoked at module initialization

Element Initializes imported modules
Custom Any other kinds of custom data
Data Data to be loaded in the linear memory during initialization

Table 2.1: Sections in a WAT WebAssembly module

2.2.6.1 Sections
This section will describe each section in the WAT format. All sections are optional, and
the module may be empty. The Type section declares function signatures used within the
module. The function types can be defined independently or as part of the function dec­
laration. The Function section has all functions, including their instructions. The Global
section contains all global variables, which can be accessed from the entire module. The
Start section defines a function to run at instantiation of the module. TheMemory section
defines an initial memory size and can optionally set an upper bound for memory growth.
The Import section allows for importing functions, and data from outside the module. Ev­
ery resource from outside the module should be declared here with the proper data types
to be accessible within the module. Subsequently, the Export section defines everything
the embedder can access within the module. This enables modules to regulate their in­
teractions with the host environment precisely. The Table section contains tables. A table
contains elements of a particular type. It can be dynamically mutated at runtime by the
host and the instructions inside the module. The table lives outside of WebAssembly’s lin­
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ear memory and is completely separated. Tables can store values of a reference type that
can be referred to by an index. Tables can be initialized through element segments found
in the Element section. The Data section facilitates the initiation of memory segments.
This resembles the functionality of the .data segment found in RISC­V.

2.2.7 Execution model
WebAssembly is a stack­based ISA. Instructions operate on a stack called the operand
stack. A stack is a data structure that follows the Last In First Out (LIFO) principle, where
elements are added (pushed) or removed (popped) from the top of the stack. The operand
stack stores short­lived temporary values. To perform computations, instructions pop val­
ues from the operand stack as input, and push the result of the computation back to the
operand stack. In other words, the operand stack can be conceptualized as a collection of
unnamed registers that instructions can implicitly reference. An instruction that pops two
i32 values and pushes one back can be described as transformation: [i32, i32] → [i32].
The WebAssembly specification [13] defines such transformation for all instructions. The
validation rules of WebAssembly guarantee a consistent stack. For instance, if a result
type is declared like (result f32), the stack must conclude with precisely one [f32]. A
violation of this will throw a type error, and the program can not be instantiated. We­
bAssembly has an implicit call stack that handles the execution flow. All functions can
call each other, including recursively. The call stack is managed by the WebAssembly
runtime and is not directly accessed or manipulated by WebAssembly code.

2.2.8 Stack-based ISA vs register-based ISA
A stack­based ISA functions fundamentally differently than a register­based ISA. A register­
based ISA uses dedicated storage locations called registers. It enhances computational
speed and reduces memory access overhead.

To illustrate these differences, two simple programs are provided, each performing the
same computation. The example uses the register­based ISARISC­V andWebAssembly.
Both programs accept two operands and perform an addition operation. The programs
can be seen in 2.9a and 2.9b.

1 li a0, 2 # Load immediate value 2 into register a0
2 li a1, 2 # Load immediate value 2 into register a1
3 add a0, a0, a1 # Add a0 and a1, store result in a0

(a) Simple RISC­V program that adds two numbers together

1 ;; stack starts empty -> []
2 i32.const 2 ;; push 2 on stack -> [2]
3 i32.const 2 ;; push 2 on stack -> [2, 2]
4 i32.add ;; pop two elements and add them together -> [4]

(b) Simple WebAssembly program that adds two numbers together

Figure 2.9: Simple addition with RISC­V Vs WebAssembly

Register­based The register­based ISA will have to load data from memory into the
registers to perform operations on that data. A key advantage is that when data is in
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registers, operations can be done very efficiently. Moreover, the result is saved in a target
register. It is explicitly stated in each instruction which registers are used, as seen in
the example 2.9a. The data is loaded into registers a0 and a1, then the add instruction
computes the sum of these and stores the result in a0.

Stack­based The WebAssembly instructions are, on the other hand, executed on a
stack machine. The example program and how it is executed can be seen in 2.9b. At the
start of program execution, the stack is empty. Then i32.const 2 is executed two times.
Both push the number 2 onto the stack. The i32.add instruction then pops two values from
the stack and pushes the sum of the two operands to the stack, leaving the number 4.

2.2.9 Virtual ISA
As previously mentioned, the WebAssembly execution engine is implemented in software
as a VM and is an abstraction on top of the actual hardware. An advantage of this is that
the VM can be adapted to run on many different underlying hardware architectures; this
is an important feature of WebAssembly since it should be able to run in browsers on
many different devices, making everything compiled to WebAssembly essentially cross­
platform. This is not a new idea. Many may remember Java’s old slogan Write once,
run anywhere (WORA), which was possible because of the Java Virtual Machine (JVM),
which is also a stack­based machine.

2.2.10 WebAssembly text format (WAT)
Like other assembly languages, WebAssembly has a human­readable textual representa­
tion called WebAssembly Text Format (WAT). WAT allows for comments inside the code
itself, both as single and multi­line comments. Comments are an important feature of
WAT in this project since this allows for code explanations directly in the compiled code,
facilitating a better understanding of the produced code.

WebAssembly in text form is usually stored in a ’.wat’­file. The textual representation
can then be transformed into the binary format of WebAssembly. The binary module is
normally stored in a ’.wasm’­file. The binary file can be executed in the WebAssembly
VM.
2.2.10.1 Instructions
Instructions are syntactically grouped into plain and structured instructions. Table 2.2
contains commonly used plain instructions. The instructions block, loop, and if are struc­
tured instructions. These instructions serve to delimit and organize nested sequences of
instructions, referred to as blocks. A structured instruction may consume an input and
produce an output on the operand stack according to its annotated block type. The struc­
tured instructions are in table 2.3.

It is important that blocks are well­formed in agreement with the grammar of WebAssem­
bly. These structured instructions must be correctly nested to ensure proper program
structure. Otherwise, the validation phase will fail.
2.2.10.2 Structured control flow
Unlike more conventional assembly languages, WebAssembly does not support standard
jump instruction. WebAssembly does not allow jumps to arbitrary label locations but uses
structured control flow constructs. This means that jump is restricted within a control
structure, such as a block or loop. To perform jumps, the branch instructions br (or other
variations of a branch) are used inside a control structure, and it will dictate where the jump
in code execution will go. The control structure can be referenced with a label associated
with that block.
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Instruction Description

nop No operation
i32.const Push a 32­bit integer constant onto the stack
f32.const Push a 32­bit floating­point constant onto the stack
i32.add Add two 32­bit integers
f32.add Add two 32­bit floating­point numbers.
i32.sub Subtract two 32­bit integers
i32.mul Multiply two 32­bit integers

i32.div_s Signed division of two 32­bit integers
i32.rem_s Signed remainder of two 32­bit integers
i32.and Bitwise AND of two 32­bit integers
i32.or Bitwise OR of two 32­bit integers
i32.xor Bitwise XOR of two 32­bit integers
i32.shl Left shift of a 32­bit integer

i32.shr_s Arithmetic right shift of a 32­bit integer
i32.shr_u Logical right shift of a 32­bit integer

i32.eq Compare two 32­bit integers for equality
i32.lt_s Signed less than comparison of two 32­bit integers
f32.sqrt Computes the square root of a 32­bit floating­point number.

drop Remove the top value from the stack

Table 2.2: Commonly Used 32­bit WebAssembly Instructions

Instruction Description

block Begin a block of instructions with a label
loop Begin a loop block with a label
if Begin an if statement block with a label

else Pseudo­instructions to begin the ”else” branch of an if statement
end Pseudo­instructions to end a block, loop, or if statement

Table 2.3: Structured control instructions

2.2.10.3 Module
In WebAssembly, the most fundamental unit is themodule, and every WebAssembly pro­
gram must contain a module to be valid. The module can have global variables, whereas
functions can hold local variables. global variables can be accessed in the entire module,
and local variables can only be accessed within the function’s scope.

The module is written as an S­Expression [24] that wraps around all module instructions.
The S­Expression stands for Symbolic Expression and is a concept used in Lisp [25]. The
S­Expression allows the code to be structured in a tree­like structure.
2.2.10.4 Writing style
S­expressions are used for more than just the module declaration but for functions, data
section entries, etc. Instructions can optionally use the S­Expression syntax, also called
its folded form[26]. In that case, the S­Expression is syntactic sugar [27]. When instruc­
tions are not written as an S­Expression, it can be referred to as the linear writing style.

An example of both writing styles is shown in figure 2.10; the examples are semantically
equivalent and yield the same result. Note how the nested instructions of a folded instruc­
tion are executed before executing the parent instruction so that the execution order is
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the same as the linear writing style.

1 global.get $var_a
2 global.get $var_b
3 i32.add
4 global.set $var_c

(a) Linear writing style

1 (global.set $var_c
2 (i32.add
3 (global.get $var_a)
4 (global.get $var_b)
5 )
6 )

(b) Folded writing style

Figure 2.10: Examples of writing style in WAT

The nested structures make the code syntactically look more like a high­level language.
Therefore, it may help programmers/students who do not have experience with other as­
sembly languages better understand this writing style.

2.2.11 Application Binary Interfaces (ABI)
In the case of WebAssembly, the term Application Binary Interface (ABI) describes how
WebAssembly modules interact with the host system. The WebAssebly module can, via
the ABI, access underlying host system capabilities through a collection of functions that
resemble a Portable Operating System Interface (POSIX)[28].

Some of the most popular ABIs include Emscripten and The WebAssembly System Inter­
face (WASI)[28][17][29]. Emscripten aims to deliver POSIX­like functionality for programs
it produces, while WASI aims to create a standardized ABI to enable portable, modular,
and runtime­independent executables.

2.2.12 WebAssembly Runtime's
In order to facilitate automated testing, the incorporation of a runtime was needed. This
section provides a brief overview of the reasons behind our decision to select theWasm­
Time runtime. This was done by comparing popular standalone runtimes.

The standalone runtime should be used for running tests of the code compiled by Hygge­
Wasm. Thus, the following criteria are of vital importance:

• Reliability: The runtime should be reliable and, therefore, have a few bugs that can
influence testing.

• Easy integration: The runtime should be easily incorporated into .NET, since the
project is written in F#.

• System interfaces: The runtime should have an implementation of WASI.

• Efficiency: efficiency was considered since this could influence the speed at which
the test could run.

A lot of WebAssembly runtimes have emerged since the introduction of WebAssembly. In
the research for this master thesis, two stood out, namelyWasmtime andWasmer.

When it comes to reliability, it seems like both Wasmtime and Wasmer are fairly mature,
with only a few bugs[30]. Therefore, the choice came down to how easy it was to em­
bed into the existing .NET application. Both runtimes are available as Nuget packages.
Wasmer’s package has poor documentation[31] and only 6.3K[32] downloads compared
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with 198.6K for the corresponding Wasmtime package[33]. Therefore, Wasmtime was
selected as the main runtime for testing.

2.3 Summary
This chapter provides an overview of the existing Hygge compiler forRISC­V and explains
its various phases. It establishes that the front­end of this compiler will be reused, and the
code generation phase will be redesigned to produce the target languageWebAssembly.

Further, the chapter introduces the source language, Hygge, its type system, and key
features. It highlights the relationship between a Hygge program and the typed AST. The
chapter also provides several examples of Hygge programs to give readers an idea of the
syntax and capabilities of Hygge.

Furthermore, WebAssembly and its key concepts are introduced, and it explains the stack­
based execution model. The chapter also explores the textual format of WebAssembly,
known as WAT. It covers the module concept, instructions, data types, and writing styles
of WAT. Lastly, the chapter discusses the selection of a WebAssembly runtime for test­
ing. After conducting a comparative analysis, the chapter selects Wasmtime as the We­
bAssembly runtime.
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3 Design
This chapter clarifies the design choices undertaken throughout the project, accompanied
by relevant technical details. The chapter outlines the project into three distinct sections:

3.1 Learning and Development tool

3.2 WAT Generation Framework (WGF)

3.3 HyggeWasm Compiler back­end

3.1 Learning and Development tool
The Learning and Development tool is designed to make it easy to load, run, and debug
WebAssembly programs produced by the HyggeWasm compiler. A formal requirement
specification of the tool can be found in appendix A.2 and a manual for using the tools
can be found in appendix D.

3.1.1 Designing effective debugging experience
The research focused on offering students and developers the best possible debugging
experience with little to no knowledge of WebAssembly and its textual format WAT.

Debugging tools for WebAssembly have been investigated. It has been observed that var­
ious methodologies exist for debugging WebAssembly programs. The chosen approach
was to use the built­in debuggers and development tools of modern browsers investi­
gated[34]. This option was chosen for the reasons listed below:

• The best feature support, includingWasmGC[35].

• Familiar debugging experience and User Interfaces (UI).

• The possibility of supporting bothHyggeSI andWASI trough the JavaSriptApplication
Programming Interface (API).

The web browsers have a very strong feature set and support compared to traditional
debugging environments. In particular, Google Chrome and Mozilla Firefox are heavily
invested in WebAssembly tooling. As of the time of writing, only Google Chrome ver­
sion 119 and later and Mozilla Firefox version 120 and later will be able to run programs
compiled with the Heap memory allocation strategy since WasmGC is only supported in
these browsers. Developing has primarily been done using Google Chrome; therefore,
launching the application in this browser is highly recommended.

Other approaches that were investigated include the use of traditional debuggers such as
GDB and LLDB alongside a supported runtime such as WasmTime or the use of tooling
specifically developed for debugging WebAssembly. GDB does not yet support Apple
Silicon[36], since the primary computer used to develop this project is based on Apple
Silicon, was GDB not further investigated. LLDB was tested and has all the features
needed to debugWAT programs. LLDB has aGraphical User Interface (GUI) mode, which
is actually a Text­based User Interfaces (TUI) shown in the terminal [37]. The experience
of using this mode can be very frustrating due to the lack of a real GUI. Therefore, it was
also considered to build a simple GUI on top of LLDB with the LLDB Python Scripting
API[38]. This idea was abandoned due to it being a potentially substantial undertaking.
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3.1.2 User interface
During the project’s initial phase, wireframes of the UI were created. The wireframes
went through multiple iterations. These iterations are in the appendix B. Please note that
wireframe B.1 was made before the technology was chosen, and therefore, it was not
meant to be a web application.

When it was clear that the learning and development tool would be a web application, the
wireframe design B.2 was chosen. A screen grab of the web application running can be
seen in appendix C.

3.1.3 HyggeWasm runtime
HyggeSI is the interface to provide I/O for the Wasm module, while memory allocation
functionality is used through it. The two components combined are referred to as the
HyggeWasm runtime. The Learning and Development tool implements the HyggeWasm
runtime.

Hygge runtime

HyggeSI

Memory allocator I/O capabilities

Figure 3.1: HyggeWasm runtime

The HyggeWasm runtime was created as a simple alternative to WASI that integrates
well with the Learning and Development tool and provides external memory allocation.
Furthermore, the HyggeWasm runtime enables the compiled modules to delegate the re­
sponsibility of memory allocation to the host system, resulting in smaller and more concise
WebAssembly modules.

This approach was inspired by AssemblyScript and Emscripten that also can offload some
memory management to their respective runtimes[39]. Emscripten compiles the needed
runtime functionality into a JavaScript bundle file associated with oneWebAssembly mod­
ule. This is further described in 2.2.2. A key difference from the approach of Emscripten
is that the compiler does not emit any Javascript alongside the WebAssembly module.
Instead, the Learning and Development tool provides this functionality.

The Hygge programs that require external functionality are programs compiled with the
external memory mode and/or The I/O supplied by the HyggeSI.

3.2 WAT Generation Framework (WGF)
This section describes the design of the WAT Generation Framework, from this point
calledWGF.WGF was designed as a separate segment from the compiler components.

WGF defines a representation of the WAT module, essentially serving as an IR. Fur­
thermore, it supplies a API for creating and manipulating the IR called the Module API.
Additionally, it implements an algorithm for producing the WAT format from this represen­
tation.
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As previously described, one of the desired features of the compiler is embedding com­
ments into the output WAT file. One of the responsibilities ofWGF is to perform this task.

3.2.1 Design research
During the project’s initial phase, research was conducted into how other compilers repre­
sented and produced WebAssembly. The research found that most WebAssembly com­
pilers produce the binary format, not the WAT format. Since comments can not be pre­
served in the binary format, it was decided to keep theWAT format as the target language;
this will be further explored in section 3.3.2. The research, therefore, revolved around so­
lutions that could represent WAT.

One source of inspiration found in the research was the Binaryen toolchain. It has a
compiler library for WebAssembly called Binaryen.js[40]. Binaryen.js provides an API for
creating the Binaryen IR, optimizing the module and producing both binary modules and
WAT modules[41][40]. This would have been an excellent choice for this project if the
original compiler front­end was written in JavaScript, even though it lacked the comments
feature. .NET bindings for Binaryen exist, but this project has not received an update in
more than 6 years[42], and it did therefore not seem promising. Furthermore, none of
the existing solutions allowed for comments in the code, thus not satisfying the project’s
requirements.

Therefore, a decision was made to develop a new representation called WGF IR. While
this entailed a considerable increase in workload, it also afforded significantly greater
flexibility and complete control over the internal mechanisms of the IR. The Module API
ofWGF was loosely inspired by Binaryen.js.

3.2.2 Intermediate representation and API
The WGF IR can easily be manipulated, combined, and reconstructed within the code
generation phase. It hides unnecessary complexity and simplifies the development of the
code generation. TheWGF IR closely resemblesWAT code written in the folded form; this
way, the IR captures the nesting of instructions. The WGF IR can be modified through the
Module API. The Module API supply functionality adds imports, exports, local and global
variables, etc. Another key feature of the WGF IR is its ability to merge twoWGF IR mod­
ules. This is used in code generation to put together fragments of compiled code. The
WGF IR offers different ways of merging modules by overloading the operators ‘+’ and
‘++’. The ‘+’ operator can be used to combine modules module_0 + module_1 resulting
in the instructions ofmodule1 to be appended tomodule0. Moreover, can a list of instruc­
tions be prepended to a module with the ‘++’ operator like so, instructions ++ module.
Furthermore, instructions can be appended to a module using the function AddCode. The
full API design can be found in appendix J.

3.2.2.1 Example of using the intermediate representation
To illustrate the use of the WGF IR, consider the code example found in 2.10b. This WAT
program can be represented in theWGF IR as shown in code example 3.2. Notice that the
code snippet 2.10b example omits the module sections and only shows the function body
and, therefore, does not show the declaration of the global variables. In this example, the
I32Add node is the parent of the two GlobalGet nodes. This indicates that WebAssembly
instruction i32.add will consume the values pushed to the operand stack by the global.get
instructions, and this association between instructions can be used in the optimization
phase and allow theWAT printing algorithm to both print in the linear and the folded writing
style when generating the WAT module.
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1 Module()
2 // Declare global variables in the module
3 .AddGlobal(("var_c", (I32, Mutable), (I32Const 0, "init value of var_c")))
4 .AddGlobal(("var_a", (I32, Immutable), (I32Const 2, "init value of var_a")))
5 .AddGlobal(("var_b", (I32, Immutable), (I32Const 2, "init value of var_b")))
6 // Add the instructions that act on the global variables
7 .AddCode(
8 [ (GlobalSet( // global.set of variable 'var_c'
9 Named("var_c"),

10 [ (I32Add( // i32.add of var_a and get var_b
11 [ (GlobalGet(Named("var_a")), "get var_a") // read var_a
12 (GlobalGet(Named("var_b")), "get var_b") ] // read var_b
13 ),
14 "add var_a and var_b") ]
15 ),
16 "set var_c") ]
17 )

Figure 3.2: Example of constructing WAT modules with WGF

3.2.3 Producing the textual format
A core responsibility of WGF is to translate the IR of the WebAssembly module to a cor­
rectly formatted WAT module. Moreover, the algorithm formats the code in linear and
folded writing styles. this includes proper code indentation based on the code’s nesting
level and/or placement within the module.

The motivation for supporting the linear and the folded writing style was primarily to sup­
port a broader range of assemblers. Please see Section 7.2 for more details.

The secondary motivation was to accommodate diverse user preferences and enhance
readability, allowing individuals to choose the format that best suits their preferences.
To enable the generation of both writing styles, the IR has to capture the nesting of the
folded form. An earlier version of theWGF represented instructions as a simple sequence,
resembling the linear style. This was much simpler, but it wasn’t easy to translate to the
folded form. See appendix N.1 for more details.

3.3 HyggeWasm Compiler back-end
This section will explore key design decisions related to the code generation itself.

3.3.1 Phases of code generation
The code generation has been split into four phases, as illustrated in fig. 3.3. The initial
code generation stage produces the IR defined by the WGF. Section 4.3 describes how
the code generation phase is designed and implemented.

The local variables’ promotion phase then refines the IR. This approach simplifies the
code generation process since all let­binders can be initially treated as local variables.
All top­level local variables must be promoted to global for the program to work correctly.
Top­level local variables are defined by being in the global scope of the original Hygge
program and, subsequently, located within the _start function in the WAT module. This
is necessary because the promoted variables can be used across any function inside the
WAT module.

When this step is completed, the module is valid and can be translated to WAT and run
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correctly. Optionally, the module can be optimized in a third phase. This phase is de­
scribed in Chapter 6.

Initial
code generation

Promotion of local
variables Optimisations

Wasm WAT
module file

(.wat)

Intermediate
representation

of WAT

Format IR to WAT
module

Figure 3.3: Phases of code generation

These steps yield an IR of the WebAssembly module, which is subsequently translated
into the actual WebAssembly Text (WAT) module. Further details on this process are
provided in Section 4.2. Refer to Section 3.3.2.1 for insights into how the WAT module
transforms into an executable program.

3.3.2 Compilation target
The compiler has been designed to produceWASM32 as the target architecture and does
so in the textual format of WebAssembly. WASM32 is a flavor of WebAssembly where
integers, floating points, and pointers (int) are all 32­bit.

Most compilers targeting WebAssembly produce the binary format directly, to produce
an executable file. This approach affords greater control, eliminating the necessity for
intermediate software to obtain the executable file. This is a further advantage if the
module includes additional information such as Debugging With Attributed Record For­
mats (DWARF) symbols for debugging, wheremodifications to the code section potentially
lead to the wrong offsets in the source code.

HyggeWasm is for didactic reasons designed to produce the textual format of WebAssem­
bly. This allows students to examine the compiled code directly in a human­readable for­
mat, facilitating amore in­depth understanding of the intricacies of the generated program.
Additionally, it allows the compiler to generate accompanying comments for the individual
instructions within the code, enhancing the comprehensibility of the output. Furthermore,
this approach simplifies the mapping of the constructs in the AST directly to a coherent
sequence of instructions, enabling students to establish a clear correspondence between
the high­level constructs and the low­level code. Furthermore, this approach ensures that
the student/developer can inspect the WAT module in the human­readable form before it
is potentially altered to obtain the executable binary format.
3.3.2.1 Obtain the binary executable
Figure 3.4 shows the full procedure of going from a Hygge program (.hyg file) to an exe­
cutable binary module (.wasm file). The procedure involves two steps:

1. Compile the Hygge source program:

The hygge source code is compiled using the HyggeWasmand translated intoWAT.
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2. Use WebAssembly Assembler:

The compiled code is then processed by the WebAssembly Assembler, translating
the textual representation of WebAssembly into the binary format.

The Hygge program can be compiled using the Command­Line Interface (CLI) of Hygge­
Wasm. appendix E provides a complete guide for doing this.

Then, a binary tool likeWat2Wasm[43] can be used to obtain a binary executable module.
The tool Wat2Wasm does not change the module but tries to do a one­to­one transfor­
mation from the textual to the binary format. Consequently, it preserves the integrity of
the original code, allowing for consistent examination and analysis, which is particularly
important for educational and debugging purposes. Therefore, using Wat2Wasm as the
primary assembler is highly recommended. The tool wasm­as has the ability to optimize
the WebAssembly module. This process might encompass multiple optimization steps
and can change the module and instructions significantly. Also, variable names and la­
bels may be renamed to internal names utilized by the tool. Following the original code
can become complicated due to this.

HyggeWasm
WebAssembly

assembler/binary
tools

Wasm module
in text format

(.wat)

Hygge
program

(.hyg)

Binary module
(.wasm)

Figure 3.4: Process of obtaining an executable module

Alternatively, the CLI can be used with a Visual Studio Code launch configuration. This
makes running files within the Visual Studio Code Integrated Development Environment
(IDE) easy and automates the entire process. The configuration files for achieving this
can be found in appendix I.

3.3.3 Compiler modes
The HyggeWasm compiler has been designed with several modes of operation. This
section will overview these and explain the purpose of the different modes. Subsequent
sections will delve into the intricacies of each mode, exploring their limitations and advan­
tages, while also elucidating the fundamental concepts that underlie their design.

• Memory Modes: Control how memory is allocated and what storage mechanism is
used.

– Internal: Memory is allocated from within the WebAssembly module, the linear
memory model is used.

– External: Memory is allocated by the embedder, and the linear memory model
is used.

– Heap: Memory is allocated by the VM and garbage collection is enabled, the
Heap memory model is used.

• Writing Style Modes: Writing style of the produced WAT module.

– Linear: WAT is produced in the flat linear writing style.

– Folded: WAT is produced in the nested foldedwriting style usingS­Expressions.
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• System Interface Modes: Defines what interface is used for I/O.

– HyggeSI (Hygge System Interface): Interface specially designed for Hygge­
Wasm.

– WASI: Standard interface.
3.3.3.1 Execution in WASI environment
The binaries produced can be executed in a WASI execution environment when the cor­
rect compiler flags are set. An overview is shown in table 3.5.

Mode Internal External Heap
Strategy Linear memory Heap
HyggeSI No No No
WASI Yes No Yes

Figure 3.5: Run modules in WASI environment

Be aware that the heap mode can only be run in an implementation of the WebAssembly
VM that supports theWasmGC[44].

3.3.4 Memory management and operation modes
This section is concerned with when to use the different memory modes and outlines how
they operate.

The external mode is the mode that best reflects howmemory was handled in the hyggeC
compiler that produced RISC­V. In that version, all memory allocation was handled by in­
teracting with the operating system (OS) via system calls. Similarly, the external mode
does not rely directly on the operating system (OS) to provide a memory block but calls
via the Hygge system interface (HyggeSI) that provides a runtime that can handle mem­
ory allocation. This approach offloads some of the logic to the runtime and, therefore,
produces smaller, more concise WAT files that are easier to read. A disadvantage is
that the compiled binary can only be executed in an environment where the HyggeSI is
implemented.

The internal mode is self­contained and does not rely on HyggeSI for memory allocation.
This is a step towards a universal executable module. A disadvantage is the larger WAT
modules because the logic for handling memory is embedded in the module. For a deeper
understanding of this size difference, refer to Section 7.1.

The heap mode transfers control of the dynamically allocated structures to the VM using
features in theWasmGC proposal. The heap is completely managed by the VM, meaning
no allocation and memory management logic is needed inside the module. Additional
type declarations are needed for heap types; these are added to the type section and use
specialized instructions to create and manipulate structures on the heap. This also allows
for universal executable modules, even though the support for the WasmGC proposal is
limited at the time of writing. In this mode, linear memory is exclusively used for static
data.
3.3.4.1 Memory layout and bump allocation
This section delves into the design of memory layout and management in the internal and
external modes using linear memory. Linear memory is, as before mentioned, essen­
tially an untyped binary array; thus, the indices of the array can be seen as a memory
address represented as an integer value. Memory management of the heap mode will be
described in Chapter 5.
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Bump allocation Bump allocation is a simple yet limited approach to memory alloca­
tion[45]. In bump allocation, we possess a chunk of memory and maintain a pointer within
that memory. When allocating a structure, an assessment ensures that sufficient capac­
ity is left in the current page(s). In case there is not enough capacity, the memory is
expanded. We then update the pointer by the size of the allocated structure, complet­
ing the procedure. The expansion is not typically part of bump allocation but was added
to allow programs where the memory needed can not be determined before execution.
Bump allocation is utilized in HyggeWasm for static and dynamic allocation. Note that no
memory is ever deallocated; only the disposal of the module instance will free the memory.

Static data is allocated during compile time, and Heapmemory is allocated during runtime.
This heap memory is not the same as used in heapmode. Static data begins at index zero
and ends at an index that will be denoted heap_base. heap_base, marking the beginning
of the dynamically allocated memory space. Subsequently, heap_end indicates the end
of set memory space. At the start of program execution, heap_base and heap_end are
equal.

In external mode, the heap_base is an exported immutable global variable, always holding
the point where the static data ends. This value is read by the runtime and used as the
initial point of dynamic allocation. Every time runtime allocation is done, the heap_end
will be moved by the size of the allocated space. heap_end is a value maintained by the
external runtime.

Heap/dynamic
data

Static data

0

heap base

heap end

Figure 3.6: Memory layout for External mode

In internal mode, heap_base is an exported mutable global variable. The Learning and
Development tool only uses the export for module validation. In this mode, heap_base
is modified from within the module to reflect the next memory block’s start address. In
internal mode, there is no distinction between static data and heap data.

3.3.4.2 Statically growing memory
A module compiled by HyggeWasm will always have at least one memory page avail­
able. In cases where the amount of static data is greater than one page, the memory is
statically grown at compile­time by increasing the number of pages available at the mod­
ule’s initialization. The static data will overlap multiple pages, as shown in 3.7. This could
be a scenario where the module contains a large string(s), as seen in the test memory­
static.hyg.
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Dynamic data
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Figure 3.7: Static data trigger expansion

3.3.4.3 Dynamically growing memory
This section will address dynamically growing memory at runtime within Linear memory.

External The external mode moves the responsibility of keeping track of the memory
space to the host environment. In this case, mechanisms for growing memory are needed
to ensure that Hygge programs are not restricted at runtime. WebAssembly has an upper
bound of 4GiB as described in section 2.2.4.3. An example of a program that needs to
expand memory at runtime can be seen in figure 3.9. The dynamic data will span multiple
pages in such a case, as illustrated in Figure 3.8.

Page 1 Page 2

0 heap base heap end

Static data

Dynamic data Empty space

Page 3

Dynamic data

Figure 3.8: Dynamic data trigger expansion

This example shown in Figure 3.9 has no real application and is only for demonstration
purposes. The program creates a struct of 8 bytes, verifies the data within the struct,
and repeats this 10,000 times. This is enough to fill the initial page and trigger a memory
expansion.

This can be easily observed by compiling the program in External mode and running the
program in the developer tools with verbose logging enabled. This will produce a console
output, a section of which can be seen in figure 3.10.

Since the page size is 65,536 bytes, it is unsurprising that it is at this threshold the memory
is grown, since the next allocation starts at the very end of the first page and goes 8 bytes
into the next page. In more general terms, the memory is expanded when an amount of
memory is requested that can not be contained within the current space available.

Internal When compiling for memory mode internal, the bump allocation is included as
WebAssembly in the module. Appendix M shows an example of this includedWasm code.
The WebAssembly code checks if a memory expansion is needed whenever memory
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1 let mutable x: int = 0;
2 let stop: int = 10000;
3
4 while (x < stop) do {
5 let s1: struct {f: int; i: int} = struct {f = 42 + x; i = 42};
6 assert(s1.i = 42);
7 assert(s1.f = 42 + x);
8 print(x);
9 x++

10 };
11
12 print("done")

Figure 3.9: Allocating memory for 10000 structs

Figure 3.10: Log from developer tool

is requested. If needed, is the memory extended just before a new memory address
is returned. The memory­specific instructions memory.size and memory.grow are used.
memory.size will leave the number of pages the module memory instance currently has.
The instruction memory.growwill expand the memory with n number of pages. The current
heap_base value is left on the stack and then updated to accommodate the newly allocated
memory space.

3.3.5 Writing Style modes
The HyggeWasm compiler can produce two styles of writing WAT, the nested folded­ and
the flat linear­writing style. The two writing styles correspond to examples shown in code
example 2.10. Both writing styles have advantages and can, in principle, be combined.
This also means WebAssembly does not restrict a WAT module to contain either writing
style exclusively. HyggeWasm, on the other hand, aims to generate either one or the
other exclusively.

Writing Style influences what assemblers can be used. Despite the assertion within the
WebAssembly specification that the folded writing style merely constitutes syntactic sugar,
the practical reality is that numerous tools and infrastructure associated with WebAssem­
bly exhibit a lack of maturity. Consequently, the adopted writing style can substantially
impact the parsing capabilities of assemblers when dealing withWebAssembly Text (WAT)
modules. An illustrative instance of this is the assembler wasm­as, an integral component
of Binaryen’s toolchain. Notably, in its present iteration, wasm­as singularly operates with
the folded S­Expression format. How this affects HyggeWasm is clarified in section 7.2.

The Folded writing style mode nests instructions under a parent’s instruction, making it
easier to grasp the relationship between instructions. It can, therefore, be a good option
when exploring code.

The Linear writing style mode is most useful when debugging. This is because Google
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Chrome decompiles the binary module back to the linear Style of WAT when using the
debugging tool. The decompilation from the binary module to WAT omits the comments
since comments can not be represented in the binary format.

Therefore, a design goal has been to make the linear style look close to identical to what
Google Chrome displays to make it easier to follow the original code with comments when
debugging with the development tool. In addition, elements within the module have been
automatically assigned comments indicating the element’s index within its respective sec­
tion of the module. For instance, the first declared global variable that has an index of
zero will have (;0;) placed after the variable name. This feature can be particularly use­
ful when referencing a global variable, which is not referenced by its name but rather by
its index. An example illustrating this concept is presented in code snippet 3.11.

1 (module
2 (type $i32_i32_=>_i32 (;0;) (func (param i32) (param i32) (result i32)))
3 (import "env" "malloc" (;0;) (func $malloc (param i32) (result i32)))
4 (memory (;0;) (export "memory") 1)
5 (global $exit_code (;0;) (mut i32) (i32.const 0))
6 (global $fun_f*ptr (;1;) (mut i32) (i32.const 0))
7 (global $fun_g*ptr (;2;) (mut i32) (i32.const 4))
8 (global $fun_g/anonymous*ptr (;3;) (mut i32) (i32.const 8))
9 ;; rest of the module ...

Figure 3.11: Indexed element sections inside WAT module

3.3.6 Input/Output and System interface modes
HyggeWasm allows for either using the Hygge system interface (HyggeSI) or WASI for
I/O.

HyggeSI has implemented all functionality described in appendix G. However, the WASI
implementation is limited and only supports reading an integer as input and printing strings
to standard output. Consequently, it serves more as a proof of concept than a compre­
hensive implementation. It is therefore recommended to use the HyggeSI.
3.3.6.1 Hygge System Interface (HyggeSI)
This section will not cover all functionalities of HyggeSI. Instead, it will focus on the design
of string printing as an example.

A namespace and a function name describe all functions in the interface. In the case of
string printing, the namespace ”env” and the function name ”writeS”. The signature of the
function is as follows:

(address : int, length : int, newline : int)→ ()

WriteS is designed to access the module’s memory. As mentioned earlier, the We­
bAssemblymodule is encapsulated. To allow the host system access to the linear memory
of the module, the module must explicitly export the memory.

The first argument of WriteS is the address, an offset in linear memory where the string
data starts. The second argument is the length of the string in bytes. The last argument
signals if the string should be printed with a line break, the value 1 or higher will result in
a line break.
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3.3.7 Entry point
As stated earlier, a Hygge is an evaluable expression which means it does not need
a main function. This is common for scripting languages such as Python, Ruby, and
JavaScript. Thus, an entry point of execution is not explicitly defined. The program is
typically executed sequentially from the top down in these languages.

The Hygge programming language operates similarly to typical scripting languages in this
regard and has no main function. In contrast, WebAssembly is specifically designed to
encapsulate all executable code within functions. To address this divergence between
the two approaches, Hygge can enforce that every program includes a main function.

This method is less desirable since Hygge is a well­defined language, and this would
add a seemingly arbitrary new rule. Additionally, there is an existing Hygge compiler for
the RISC­V ISA, and it is preferable that both compilers can handle the same Hygge
programs. Moreover, numerous Hygge test programs have already been written for the
aforementioned ISA that preferably should be reused in the test suite.

Therefore, a more pragmatic approach was chosen. The proposed solution encapsulates
the global scope of the Hygge program in an implicit function inside the WebAssembly
module. Optionally, Hygge could allow for an explicitly defined function with a unique
name, such as ”main” or ”start,” to let the Hygge programmer capture this behavior. In
this project’s scope, this will be perceived as future work.

To conform with the WASI conventions the main function of a WASI­compatible program
must be exported with the name _start. Therefore, all HyggeWasm generated modules
will have such an export. This function can then be invoked from the host environment,
and a result can be returned to the host from the WebAssembly module function.

Another approach used by, for instance, AssemblyScript, is to define a start function that
will execute when aWebAssembly module is instantiated. This is done in the start section
of the WebAssembly module like this: (start $label). One problem with this is that the
host environment does not retrieve the return value of the main function. It is necessary
to separate the instantiation and execution processes to enable the Learning and Devel­
opment tool to load and instantiate a module without immediate execution. This allows
users to set breakpoints and observe the module instance before executing any code.

3.3.8 Program termination
The program can either execute as intended, reaching a point where the _start function
returns, thereby ending the module’s execution, or it can enter a faulty state and, con­
sequently, need to be terminated. This may happen when an invalid input is given, for
instance, trying to create an Array of size ­1 or when the Assert expression is evaluated
with a faulty boolean statement. The unreachable instruction is used to indicate such
errors.

The unreachable instruction signals that the current program counter (PC) is not valid dur­
ing normal program execution. Thus, it can be used as an assertion, signaling that a bug or
unexpected behavior has been reached. The unreachable instruction will cause an uncon­
ditional trap when executed and will return control to the host system. The unreachable
instruction does not return any additional information to the host system. Thus, another
way of signaling an exit code had to be established. Therefore, HyggeWasm is designed
to set a global value called exit_code when a runtime error occurs, such as an assertion
failing. The exit_code value is exported so the host can obtain the value after termination.
The exit_code determines whether each test yielded the expected result while running
the automated test suite.
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Early versions of the HyggeWasm back­end explored whether the return value of the
_start function could be treated as an exit code of the program. This was scrapped since
this meant that the program would continue execution even after a faulty assertion was
made. Furthermore, a global variable holding the exit code is needed to assert statements
embedded in other structures like other functions or control structures. Otherwise, all
asserts would have to be used at a top level, an undesirable restriction not part of the
Hygge language specification.

3.3.9 Label naming
As part of the original RISC­V compiler, several utility functionalities were provided. One
of these ensured the unique naming of labels by appending a number to a variable name.
It was found that this had to be changed to ensure unique names for HyggeWasm. The
problem arose when the hygge programmer chose a name equal to the internal name
used by the compiler.

For example, if two variables were named i in the same function, the first variable would
get its internal name var_i and the second var_i_0. If a new variable is introduced in
the same function with the name i_0, the compiler will recognize it as a unique name
and, therefore, not append any additional numbers to it. This would give it the internal
name var_i_0 and, therefore, create a name collision with the second variable. To fix this
problem, the naming changed to use the scheme var$num. This ensures unique names
since a valid variable name in Hygge can not contain the $­character.

3.3.10 Function types
Types reside in their section in each WebAssembly module. Functions need to declare
their signature as a type. In an early version of HyggeWasm, the types were declared in
line with the function declaration. This was later changed to deliver more readable code
and more flexibility. When a type is declared by itself, it can be reused and referred to
when, for instance, doing an indirect call to a function.

In early versions of HyggeWasm, indirect calls did not use the type declarations but ex­
plicitly wrote out the entire function signature every time it was called. This was simple
from a code generation standpoint since the function signature could be found in the typed
AST.

Types had three forms throughout the development. The explicit one is discussed above.
The first version had a very naive approach where every function had a type labeled
with the function name and a suffix “_type”. This was a valid solution but did have a
disadvantage that there was no type of reuse, and type names had to be looked up through
the function reference table every time instructions for an Application (invocation) had
to be done.

A new method was implemented to enable reuse and easy usage of the function types,
inspired by AssemblyScript. Instead of having a type name that one­to­one mapped to a
function, the naming scheme was changed to reflect the type it represented. This way,
multiple functions can share a type declaration. Furthermore, the type label can be easily
recreated based on the type annotated AST, eliminating the need to look up function type
relationships.

3.4 Summary
The chapter begins with an exploration of the design considerations behind the Learning
and Development tool, focusing on debugging methods and the decision to utilize a web
application to leverage modern browser­based development tools.
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It then introduces the design and functionalities of the HyggeWasm runtime and HyggeSI,
highlighting HyggeSI’s role as the interface for I/O and memory allocation within the We­
bAssembly module, forming the core of the HyggeWasm runtime.

The WGF IR is introduced as the foundational structure for code generation, followed by
outlining key design decisions for code generation, such as the compilation target and the
method for generating executable WebAssembly modules.

The chapter also explains HyggeWasm’s operation modes, including memory modes,
writing styles, and system interfaces, detailing their inner workings and showcasing con­
figurations for producing WASI executable modules.

Additionally, it discusses general design decisions like internal label naming, control struc­
ture labels, and function type identifiers.

Moreover, it describes the creation of the target program’s entry point and its design to
enable the automated test suite to verify program execution correctness and handle ter­
mination in case of incorrect execution.
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4 Implementation

This chapter documents the implementation details of key components of the project. The
components are:

4.1 Development and learning tool

4.2 WAT Generation Framework (WGF)

4.3 HyggeWasm Compiler back­end

The source code of all components can be found in appendix O.

4.1 Development and learning tool
This section describes the implementation of the web application that enables the loading,
execution, debugging, and I/O of modules produced by HyggeWasm. The tool is imple­
mented as a web application written in TypeScript using the framework React[46]. This
application relies on the web browser’s built­in development tools to supply all debugging
functionality.

4.1.1 Loading WebAssembly modules
All the functionality used for loading binary WebAssembly modules can be found in the
componentwasm­loader in the file src/components/wasm­loader.tsx. To load files into the
browser, the Node Package Manager (npm) package use­file­picker is used [47][48]. The
npm package use­file­picker implements a hook[49] that encapsulates the functionality for
loading and reading files via a popup file selector window. The behavior of use­file­picker
can be customized to fit the use case, by applying the arguments to the hook. In this
case, only binary WebAssembly module (.wasm) files can be loaded; only one file can be
loaded simultaneously. When the file is loaded the data is represented as a ArrayBuffer.

The data found in the ArrayBuffer can then be used to compile the WebAssembly mod­
ule via the WebAssembly JavaScript API[50]. The WebAssembly.compile method com­
piles WebAssembly binary code into a WebAssembly.Module object. Normally, the We­
bAssembly.instantiate method can be used directly on the binary data, but in this case,
we want to validate some attributes of the module first.

The validation ensures that the file loaded will work correctly with the tool. This validation
will approve all files produced by HyggeWasm. The process includes confirming that a
heap base pointer value is exported; in this case, there is no such export, and the user
is given an error. It does not stop the user from trying to run the module. Similarly, it
is ensured that the _start function is exported in the module. The described process is
shown in code snippet 4.1.
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1 // code loading the file
2 // ...
3 // Compile the module into an object
4 const module: WebAssembly.Module = await WebAssembly.compile(bytes);
5 // perform checks
6 const exports = WebAssembly.Module.exports(module);
7 const heapBase = exports.find((e: exportValue) => e.name == "heap_base_ptr" ?

true : false);
8 const haveEntryPoint = exports.find((e: exportValue) => (e.name == "_start" &&

e.kind == "function") ? true : false);
9 // ...

10 // code that manipulates the component's state to show errors in the UI if
needed.

Figure 4.1: Compile and check module for errors

When creating an instance of the WebAssembly module, an object containing all the im­
ports used in the module is supplied. Because the Learning and Development tool should
be able to run with both HyggeSI and WASI, the two objects are combined into one object
that holds all the functions of WASI and HyggeSI. The WASI imports are coming from the
npm package wasmer/wasi[51]. This package polyfills essential WASI functionality that
the browser lacks.

Consider the code snippet 4.2, this shows how the instantation is done in JavaScript with
the needed imports. The wasmModule refers to the compiled module in code snippet 4.1.

1 const combinedImports = {
2 ...wasiImports , // WASI imports
3 ...getImports(memoryAllocator , isDebug) // HyggeSI "custom" imports
4 };
5
6 const instance: WebAssembly.Instance = await WebAssembly.instantiate(

wasmModule , combinedImports);

Figure 4.2: Creating module instance in JavaScript

4.1.2 Implementation of the HyggeWasm runtime in TypeScript

HyggeSI is implemented in the file src/services/ImportService.ts. Code snippet 4.3 shows
an extract of the HyggeSI implementation. This implementation conforms to the interface
described in appendix G.
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1 export function getImports(memoryAllocator: MemoryAllocator , isDebug: boolean
= false): object {

2 return {
3 env: {
4 writeS(address: number, length: number, nl: number) {
5 const mem = new Uint8Array( // read memory into a Uint8Array
6 (memoryAllocator.memory as WebAssembly.Memory).buffer
7 );
8 const data = mem.subarray( // create sub-array of string data
9 address,

10 address + length
11 );
12 // Convert array into a string as utf-8.
13 const decoder = new TextDecoder("utf-8");
14 const text = decoder.decode(data);
15
16 if (nl) { // add new line if requested
17 console.log(text + "\n");
18 }
19 else {
20 console.log(text);
21 }
22 },
23 writeInt(i: number, nl: number){
24 if (nl) {
25 console.log(i + "\n");
26 }else {
27 console.log(i);
28 }
29 },
30 malloc(size: number) {
31 let pointer = memoryAllocator.allocate(size);
32 if (isDebug) { console.log("malloc", size, "pointer", pointer); }
33 return pointer;
34 },
35 readInt() {
36 var num;
37 do {
38 var val = prompt("Input an integer");
39 if (val == null) {
40 continue;
41 }
42 num = parseInt(val);
43
44 console.log("User provided input:", num);
45 return num;
46 }
47 while (num && isNaN(num));
48 return 0;
49 }
50 }
51 },
52 // more ... (writeFloat , readFloat)
53 }

Figure 4.3: HyggeSI TypeScript implementation
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Three examples will be described: writeS: Print console (output), readInt Read an integer
(Input) and malloc: Allocate new memory block.

4.1.2.1 Output
writeS uses the memory allocator. The Memory allocator will be described in Section
4.1.2.3; for now, it is sufficient to know that it refers to the memory of the module instance
for the currently running program. writeS utilizes the memory allocator’s reference to
read the memory into a Uint8Array. The array is then used to create a subarray that only
contains the string data that should be printed. The raw data is then converted into a
UTF-8 string using the TextDecoder; see section 4.3.6.13 to learn more about strings in
HyggeWasm. Then, the string can be printed with console.log. Based on the nl argument,
a new line character is appended to the string.

4.1.2.2 Input
readInt asks for input as a string until a string can be passed successfully as an integer
value. It asks the user for input using a window prompt[52]. How this looks in the UI can
be seen in fig. D.6. When an input is successfully passed, the host system returns control
to the running module instance, and the input value is placed on top of the operand stack.

4.1.2.3 Allocating new memory block
Thememory allocator is in the file src/services/MemoryAllocator.ts. malloc uses the mem­
ory allocator to resolve the pointer to the newmemory block with the allocate function. The
allocate function takes one argument, the size of the requested memory block, and re­
turns a pointer to where the new structure can be placed in memory. The implementation
of allocate can be seen in code snippet 4.4. The implementation follows the bump allo­
cation strategy described in Section 3.3.4.1. There is only one instance of the memory
allocator since it encapsulates the memory state.

1 /// Allocate a new block of memory of the given size in bytes.
2 /// Returns the offset of the allocated block.
3 allocate(size: number): number {
4 // if the offset + size is greater than the current size of the memory
5 // then grow the memory by the required number of pages
6 if (this.offset + size > (this.currentSize * this._pageSize)) {
7 // find required number of pages to needed
8 const requiredPages = (this.offset + size) / this._pageSize;
9 // round required pages to the next integer

10 const roundedPages: number = (Math.ceil(requiredPages) as number);
11 // difference between current size and the new required size
12 const growBy = roundedPages - this.currentSize;
13 // grow by n number of page(s)
14 this._memory?.grow(growBy); // grow by n number of page(s)
15 this.currentSize += growBy; // update current size
16
17 if (this._isDebug) console.log(`MemoryAllocator: growing memory by ${

growBy} pages `);
18 }
19 const addrees = this.offset; // save current offset
20 this.offset += size; // increment offset by size
21 return addrees; // return address
22 }

Figure 4.4: Bump Allocator implemented in TypeScript
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4.1.3 WASI limitations
The Learning and Development tool is limited when working with WASI programs. While
the tool accepts integer inputs and display string outputs when usingWASI, the input must
be provided before execution of the module. This is due to the unavailability of callbacks
every time the Hygge function readInt is called. The input prompt is shown based on the
presence of the fd_read import. As a result, the tool can only accept one integer input in
WASI programs. It is important to note that this limitation is not imposed by the compiled
code but by the tool itself.

Instead of printing to output during runtime, the tool currently prints the entire output at
once after execution.

4.1.4 User Interface
The UI of the web application is very simple. It is implemented in React with only a few
components defined using JSX.

The verbose logging switch maintains its state by persisting it in local storage through
the use of the localStorage API[53]. This implementation ensures that the toggle’s state
persists when the page is reloaded.

4.2 WAT Generation Framework (WGF)
The implementation of WGF defines the IR of the module and each instruction.

4.2.1 Instructions
The instructions are defined inWGF/Instructions.fs, and an extract of the used instructions
are shown in code snippet 4.7. Instructions that consume values from the operand stack
holds a list of commentedWebAssembly instructions. Some instructions are defined twice
with a ”_” at the end. These are the memory instructions that can take static immediate
memory arguments. Instructions are encapsulated inside the Commented type alongside
a string meant to comment on the instruction. The type can be seen in fig. 4.5.

1 type Commented <'a> = 'a * string

Figure 4.5: Commented instructions

1 type Label = string
2 type Identifier =
3 | Named of Label
4 | Index of int
5 override this.ToString() =
6 match this with
7 | Named s -> $"${s}" // '$' in front of label
8 | Index i -> $"{i}" // index as string

Figure 4.6: Label and Identifier
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1 type Wasm =
2 | Br of Label
3 | BrIf of Label * Wasm Commented list
4 | I32Load_ of int option * int option * Wasm Commented list
5 | I32Load of Wasm Commented list
6 | I32Store_ of int option * int option * Wasm Commented list
7 | I32Store of Wasm Commented list
8 | I32Const of int32
9 | F32Const of float32

10 | I32Add of Wasm Commented list
11 | I32Sub of Wasm Commented list
12 | I32Mul of Wasm Commented list
13 | I32Eqz of Wasm Commented list
14 | I32Eq of Wasm Commented list
15 | I32LtS of Wasm Commented list
16 | LocalGet of Identifier
17 | LocalSet of Identifier * Wasm Commented list
18 | LocalTee of Identifier * Wasm Commented list
19 | GlobalGet of Identifier
20 | GlobalSet of Identifier * Wasm Commented list
21 | Call of Label * Wasm Commented list
22 // more instructions ...

Figure 4.7: WebAssembly instructions in WGF

The Label type names elements within the module. Some instructions refer to other el­
ements using an Identifier. An Identifier is used when a Label or an index is referencing
an element. The type definition can be seen in code snippet 4.6.

4.2.2 Module
The module is a Record and holds all the data about each section of a WAT module.
Much of the code for manipulating the module is relatively straightforward; therefore, this
section will only highlight essential implementation details. Below is a list of the sections
in the module and the type used to represent them.

• types: list<TypeDef>

• functions: Map<string, Commented<FunctionInstance>>

• memories: Set<Memory>

• globals: Set<Global>

• exports: Set<Export>

• imports: Set<Import>

• start: Start

• elements: Set<Element>

• data: Set<Data>

• locals: Set<Local>

• funcTableSize: int

• tempCode: list<Commented<Instr.Wasm>>
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• hostinglist: string list

Themodule does not represent tables because only the special func_table is used. There­
fore, all elements are automatically in the func_table. To see a complete list of functions
the module contains, see appendix J.

To ensure that section elements are not duplicated when combining modules, many of
the module sections are represented by a Set, thus not allowing duplicate elements. In
the sections where the order of the elements is important, such as the temporary code
accumulator or the type section, a list is used. Functions consist of a Map where the key
is the name of the function and the value is a Commented<FunctionInstance>> that holds
all information about the function alongside a comment.

4.2.3 Produce textual format
The module override the ToString function and can transform the module representation
into the textual format. Consider the code snippet 4.8 that shows the overall structure of
the code. ToString is implemented by iterating through all the module sections, formatting
the elements to the proper WAT syntax in a string, and appending it to the result variable.
In the end, the result will contain the entire WAT module formatted as a string. When
generating the module’s functions, the function’s body is produced by the generateText
function.

1 // open module tag
2 let mutable result = "(module\n"
3
4 // print all types
5 for type_ in List.indexed (this.types) do
6 result <- result + (printType type_ false)
7
8 // prior sections being formatted into the string...
9 // create functions

10 let mutable x: int = 0
11 for funcKey in this.functions.Keys do
12 let (f), c = this.functions.[funcKey]
13 // using generateText to format body of function
14 result <-
15 result
16 + $"{gIndent 1}(func %s{genrate_name f.name} %s{ic x} %s{

generate_signature f.signature c} %s{generate_local f.locals}\n%s{
generateText f.body style} )\n"

17
18 // increase x
19 x <- x + 1
20
21 // more sections being formatted into the string...
22 // close module tag
23 result <- result + ")"
24
25 // return module represented in WAT format as string
26 result

Figure 4.8: Module ToString

The generateText function can format every instruction into the proper syntax of the text
format in both the folded and the linear style. generateText uses an auxiliary function im­
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plemented as a recursive accumulator function called aux. The aux function takes a list of
all the instructions for which code should be generated. The second argument is the WAT
string accumulator, and lastly, a number that describes the nesting level, which is used to
indent the code correctly. This function has some special cases for instructions, includ­
ing the block instruction because it uses pseudo instructions as delimiters and memory
instructions with additional intermediate arguments. Some general cases handle the rest.
The general cases can be seen in code snippet 4.9, where line 19 shows how the code
is rearranged for the linear style.

1 let generateText (instrs: Wasm Commented list) (style: WritingStyle) =
2 let rec aux (instrs: Commented <Instr.Wasm> list) (watCode: string) (indent

: int) =
3 match instrs with
4 | [] -> watCode
5 | head :: tail ->
6 let (instr, c: string) = head // deconstruct instr and comment
7 let space = gIndent indent // compute indent
8 match instr with
9 | F32Eq instrs

10 | F32Store instrs
11 | I32Add instrs when style = Folded -> // general case - folded
12 let watCode =
13 watCode
14 + space
15 + $"({instrLabel instr}{commentS c}\n{aux instrs emptyS (

indent + 1)}{gIndent (indent)})\n"
16
17 aux tail watCode indent
18 // more cases ...
19 | I32Add instrs when style = Linear -> // general case - linear
20 aux
21 tail
22 (watCode
23 + (aux instrs emptyS indent)
24 + $"{gIndent indent}{instrLabel instr}{commentS c}\n")
25 indent

Figure 4.9: Format in folded and linear style

4.3 HyggeWasm Compiler back-end
This section offers a detailed perspective on the practical implementation of the compiler
back­end. It seeks to elucidate how design decisions and research findings have been
applied in practice, providing a comprehensive view of the implemented compiler back­
end.

4.3.1 Solution structure of the HyggeWasm Compiler
The HyggeC project depends on theWGF andWasmTimeDriver projects. TheWGF has
already been discussed, and the next section will delve into the implementation details of
theWasmTimeDriver project.

The HyggeC project contains the compiler implementation itself. WGF defines the IR of
the WebAssembly module and all the WebAssembly instructions used. The WGF IR is
used in code generation and the proceeding optimization phase. WasmTimeDriver runs
WebAssembly code with the Hygge runtime.
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«component»
HyggeC

«component»
WGF

«component»
WasmTimeDriver

Figure 4.10: Project dependencies

4.3.2 WasmTime driver

WasmTimeDriver is a C# project that implements the Hygge runtime and wrap functional­
ity found in theWasmtime Nuget package. This is to make it easy for HyggeWasm to use
the functionality for execution and testing of the compiled Wasm programs. The Wasm­
time Nuget package can operate multiple virtual machines (VM) simultaneously. fig. 4.11
illustrates this in a component diagram.

«component»
HyggeC

«component»
WGF

«component»
WasmTimeDriver

HyggeWasm

«component»
WasmTime 9.0.2

0..n

Figure 4.11: WasmTime component diagram

4.3.3 Implementation of the HyggeWasm runtime in C#

The fileWasmTimeDriver/WasmVM.cs contains all main functionality of HyggeSI as well
as supplying functions for running .wat files and WAT modules as a string. When run­
ning the WebAssembly programs through the WasmVM implementation, the HyggeSI is
automatically injected. The interface of the WasmVM class can be seen in code snippet
4.12.
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1 public interface IWasmVM
2 {
3 object? Run(string wat, string target, string name = "unknown");
4 public object? RunFile(string path, string name = "unknown");
5 public object? RunFile(string path, string target, string name = "unknown"

);
6 public object?[] RunFileTimes(string path, string target, int n);
7 public object?[] RunFileTimes(string path, int n);
8 object? RunWatString(string target, string wat, string name = "unknown");
9 object? RunWatString(string wat, string name = "unknown");

10 }

Figure 4.12: Hygge code that pushes multiple values to stack

This section highlights key differences as the implementation is similar to the TypeScript
implementation described in section 4.1.2. Code snippet 4.13 contains a section of the im­
plementation of the HyggeSI. The instance’s memory can malloc access directly through
the Caller argument. readInt uses Console.ReadLine and will, therefore, take input di­
rectly in the terminal in contrast to the prompt that the TypeScript implementation uses.

1 _linker.Define( // malloc - allocating memory chunk.
2 "env",
3 "malloc",
4 Function.FromCallback(_store, (Caller caller, int size) =>
5 {
6 IntPtr adreess = _allocator.Malloc(caller.GetMemory("memory"), size);
7 return adreess.ToInt32();
8 })
9 );

10 _linker.Define( // Get an integer as input
11 "env",
12 "readInt",
13 Function.FromCallback(_store, () =>
14 {
15 try
16 {
17 string? s = "";
18 int res;
19 do
20 {
21 s = Console.ReadLine(); // read line from console
22 res = Int32.Parse(s); // parse input as a int
23 } while (s is null);
24 return res; // return interger value
25 }
26 catch (Exception e)
27 {
28 Console.WriteLine("error:" + e);
29 }
30 return 0;
31 })
32 );

Figure 4.13: Hygge runtime implementation in C#
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4.3.4 Code generation environment
The code generation algorithm maintains a Code generation environment. The Code
generation environment encompasses various information related to the produced code,
including:

• The name of the function currently being compiled.

• The static memory allocator controller keeping track of memory blocks with bump
allocation.

• The function table controller keeping track of the current number of elements in
the function table.

• The symbol controller is a naming utility used to ensure unique names for vari­
ables, functions, and IDs within a module.

• The variable storage provides information about known variables and where the
data associated with a variable is stored. The variable storage is also referred to as
VarStorage. VarStorage keeps track of the following storage types:

1. Global ­ A global variable in the module scope.

2. Local ­ A local variable within a function scope.

3. Offset ­ A variable residing in memory within a closure environment.

4.3.5 Stack management
As described in section 2.2.5, WebAssembly will do the validation phase, making sure cer­
tain constraints are met. This includes that only the expected values are on the operand
stack[54], ensuring that the generated code does not keep unused values on the stack.
The validation compares the stack values with the result type of control structures and
functions. The result type describes what the control structure or function evaluates to,
thus what value is left on the stack. The result type can be seen in the WAT code as
(result i32).

To explore how this affects the code generation of Hygge, consider the code snippet 4.14.
This example has the problem that the if­branch will leave two integer values on the stack
while the else­branch will leave only one integer. Both branches must have the same
return type for the program to be valid. While WebAssembly can have result types that let
a control structure leave multiple values on the stack, HyggeWasm is designed to strictly
allow for only one result value.

1 fun f(arr: array {int}, i: int): array {int} = {
2 if (i < arrayLength(arr)) then { // <-- Result type of (i32)
3 arrayElem(arr, i) <- i + 1; // <-- Push i32 value
4 f(arr, i + 1) // <-- Function will push address (i32)
5 }
6 else {
7 arr // <-- Push i32 value
8 }
9 };

Figure 4.14: Hygge code that pushes multiple values to stack
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To overcome this problem, the compiler has to recognize what expressions of a sequence
that push unused values to the operand stack. If a value is not used, that value has to
be discarded. Therefore, whenever the compiler generates code for a sequence in the
AST it inspects that node’s type, meaning what value it evaluates to. The last element
of the sequence is expected to be the return value, which is left on the stack. All other
elements are evaluated as follows. In the case that the node evaluates to a unit, nothing
is done, since a unit value is not represented in WAT code, and therefore, no value is
pushed to the stack. Otherwise, a value will be pushed to the stack, which we know is not
the return value if it is not the last in the sequence. A drop instruction ensures this value
is discarded and the stack is kept clean and consistent. The implementation can be seen
in code snippet 4.15.

1 | Seq(nodes) ->
2 let lastIndex = (List.length nodes) - 1 // index of return value
3 List.fold
4 (fun m (i, node) ->
5 if (i = lastIndex) then
6 // return last node with no modifications
7 m + doCodegen env node (Module())
8 else
9 match node.Type with

10 | TUnit -> m + doCodegen env node (Module())
11 | _ ->
12 let subTree = (doCodegen env node (Module()))
13 // drop value of 'subTree'
14 (m + subTree.ResetAccCode())
15 .AddCode([ (Drop(subTree.GetAccCode()), "drop") ]))
16 m
17 (List.indexed nodes)

Figure 4.15: Handling sequnces

4.3.5.1 Initilizizing static segments of data
Throughout the compiler’s back­end development, various scenarios arose where space
must be statically allocated during compilation and the data placed in memory before
execution. As discussed in section 2.2.6, the WebAssembly module’s data section can
initialize memory segments during module instantiation by providing a string of data and
a start address. From this point on, the term data string will be used to refer to a string
that contains the data as 8­bit hexadecimal numbers. The data string allows the module
to initialize large memory blocks statically as hexadecimal digits.

This approach was inspired by AssemblyScript’s data segment initialization. Code exam­
ple 4.39 displays its representation in the WAT module after being compiled by Hygge­
Wasm.

To create a data string, the 32­bit integer is first split into four 8­bit chunks by shifting the
values to the right. Then, a mask is used to obtain the 8­bit value for each chunk. Next,
each value is converted into a hexadecimal string with the correct format. finally, all the
hexadecimal strings are concatenated into one string.

The approach used was important in keeping the module easy to read. By allowing the
compiler to initialize large segments in a single data entry instead of creating one for each
32­bit value, the data section of the module became significantly smaller.
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The file util.fs contains the logic for producing the data string. The function dataString
takes a list of data as input and produces the string.

1 let intToHex (i: int32) : string = // int to hex value
2 let hex = System.Convert.ToString(i, 16)
3 let paddedHex = if hex.Length = 1 then "0" + hex else hex
4 System.String.Concat("\\", paddedHex)
5
6 let intTo32Hex (value: int32) = /// int to hex string
7 let mask = 255 // 8 bits set to 1
8 List.fold
9 (fun acc elem -> acc + intToHex elem)

10 ""
11 [ value &&& mask // it is split op into 4 bit chunks
12 (value >>> 8) &&& mask
13 (value >>> 16) &&& mask
14 (value >>> 24) &&& mask ]
15
16 let rec dataString l = // combine multiple values in one string
17 match l with
18 | [] -> ""
19 | x::xs -> intTo32Hex x + dataString xs

Figure 4.16: How hexadecimal data strings are produced

4.3.6 Language features
This section will describe how the code generation algorithm has been implemented. It
will do so by going through each language feature found in appendix A.1 individually.

The features have been divided into the following sections. Please note that some sec­
tions will describe multiple features.

1. Literal values

2. Negative numbers

3. Arithmetic and logic operators

4. Variables

5. Input/Output and interaction with host system

6. Assignments

7. Compute­assign operators

8. Pre­ and post­increment and decrement operators

9. Conditional statements

10. Short­circuiting logic operators

11. Structs

12. Strings

13. Arrays

14. Discriminated union­type constructor
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15. Pattern matching

16. Loops

17. Functions

The code generation is implemented in the file src/wasm/WasmCodegen.fs. The function
codegen initiates the process and sets up the essential structure of the module. This
includes defining the module’s main function _start and adding all generated code based
on the top­level scope of the Hygge program to the body of the _start function instance.
Moreover, it adds the heapBase and exitCode as global variables and exports them.

The algorithm recursively propagates a typed AST to produce an IR of the target language.
When a node is evaluated, the doCodegen function is recursively applied until reaching
the tree’s leaf nodes.

4.3.6.1 Literal values

A unit value will produce no additional code and will, therefore, return the current module
without modifications. When a Literal value is encountered in the AST the value is pushed
to the stack. Booleans are represented by an integer where 0 = false and all other values
are truthy. Integer and boolean values are pushed with the i32.const instruction and
floating points with the f32.const instruction. The cases in the code generation algorithm
can be seen in code snippet 4.17.

1 | IntVal i -> // push 'i' to the stack
2 m.AddCode([ (I32Const i, $"push %i{i} on stack") ])
3 | BoolVal b -> // push 'b' to the stack
4 let v = if b then 1 else 0 // ensure be is either 1 or 0
5 let s = if v = 1 then "true" else "false" // just for the comment
6 m.AddCode([ (I32Const(v), $"push %s{s} on stack") ])
7 | FloatVal f -> // push 'f' to the stack
8 m.AddCode([ (F32Const f, $"push %f{f} on stack") ])

Figure 4.17: Handling literal values

4.3.6.2 Negative numbers

Negative integer and floating point values are handled as a unary negation[55]. In the
AST, a value can be encapsulated in a Neg­node, meaning the value is essentially a
negative number. In case the Neg­node is directly containing a IntVal or FloatVal, we
can statically add the sign to the number in the instruction, making sure that no further
computation is needed. In cases where it does not directly contain literal values, we
multiply the entire result by −1 at runtime, ensuring the value has the correct sign. The
code handling negative numbers can be seen in code snippet 4.18.
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1 | Neg({ Node.Expr = IntVal(v); Node.Type = TInt }) ->
2 m.AddCode([ (I32Const(-v), $"push %i{-v} on stack") ])
3 | Neg({ Node.Expr = FloatVal(v); Node.Type = TFloat }) ->
4 m.AddCode([ (F32Const(-v), $"push %f{-v} on stack") ])
5 | Neg(e) ->
6 let m' = doCodegen env e m
7 let instrs =
8 match (expandType e.Env e.Type) with
9 | t when (isSubtypeOf e.Env t TInt) -> m'.GetAccCode() @ [ (I32Const

(-1), "push -1 on stack"); (I32Mul, "multiply with -1") ]
10 | t when (isSubtypeOf e.Env t TFloat) -> m'.GetAccCode() @ [ (F32Const

(-1.0f), "push -1.0 on stack"); (F32Mul, "multiply with -1.0") ]
11 | _ -> failwith "negation of type not implemented"
12 m'.ResetAccCode().AddCode(instrs)

Figure 4.18: Handling negative numbers

4.3.6.3 Arithmetic and logic operators
Arithmetic and logic operators are implemented in a single procedure. Consider the code
snippet 4.19. To apply the operators, both the left­hand­side and right­hand­side nodes
are evaluated into modules called lhs’ and rhs’. Then, the proper instruction is determined
based on the type of the current node and the operator used; the instruction is put in the
variable opCode. There are arithmetic instructions that handle either signed or unsigned
integers. In such cases, HyggeWasm will always handle the integer as signed integers.

The instructions found in the instruction accumulator of lhs’ and rhs’ are combined and
nested inside opCode. To ensure that all other sections of the modules are merged cor­
rectly, the lhs’ and rhs’ modules are combined without their instruction accumulator, and
the code encapsulated by opCode is appended to the module.

The operators for equality (’=’), greater then (’>’), less then (’<’), less then or equal (’<=’),
and greater then or equal (’>=’) are all implemented in a very similar fashion.
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1 | Add(lhs, rhs) // addition '+'
2 | Sub(lhs, rhs) // subtraction '-'
3 | Rem(lhs, rhs) // remainder division '%'
4 | Div(lhs, rhs) // division '/'
5 | And(lhs, rhs) // and 'and'
6 | Or(lhs, rhs) // or 'or'
7 | Xor(lhs, rhs) // exclusive or 'xor'
8 | Mult(lhs, rhs) as expr -> // multiplication '*'
9 let lhs' = doCodegen env lhs m // code for the left-hand-side term

10 let rhs' = doCodegen env rhs m // code for the right-hand-side term
11 let opCode = // find instructions based on the current node's type.
12 match (expandType node.Env node.Type) with
13 | t when (isSubtypeOf node.Env t TInt) -> // type int
14 match expr with
15 | Add _ -> I32Add
16 | Sub _ -> I32Sub
17 | Rem _ -> I32RemS
18 | Div _ -> I32DivS
19 | Mult _ -> I32Mul
20 | _ -> failwith "failed to find numeric int operation"
21 | t when (isSubtypeOf node.Env t TFloat) -> // type float
22 match expr with
23 | Add _ -> F32Add
24 | Sub _ -> F32Sub
25 | Div _ -> F32Div
26 | Mult _ -> F32Mul
27 | _ -> failwith "failed to find numeric float operation"
28 | t when (isSubtypeOf node.Env t TBool) -> // type bool
29 match expr with
30 | And _ -> I32And
31 | Or _ -> I32Or
32 | Xor _ -> I32Xor
33 | _ -> failwith "failed to find numeric operation"
34 (lhs'.ResetAccCode() + rhs'.ResetAccCode())
35 .AddCode([ opCode (lhs'.GetAccCode() @ rhs'.GetAccCode()) ])

Figure 4.19: Code generation of arithmetic operators

Logical not The Logical NOT is a unary operation and, therefore, handled separately.
It follows the same process as the binary operators with the determination that there is
only one node as an argument. That argument is evaluated to a module, m’. The code of
m’ is nested inside the instruction i32.eqz to negate the boolean value of m’. As before,
the m’ module is used without the instruction accumulator to combine everything.

1 | Not(e) ->
2 let m' = doCodegen env e m
3 m'.ResetAccCode().AddCode([ I32Eqz(m'.GetAccCode()) ])

Figure 4.20: Code generation for logical not

Square root function The function sqrt only accepts floating­point values as input,
which is enforced by the type­checking mechanism. WebAssembly has instructions for
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finding a square root of a floating point; thus, the code generation is fairly straightforward.
Consider the code snippet 4.21. The argument e is evaluated using the current module
and produces a new module m’. The code inside the module m’ is then placed inside the
f32.sqrt and added to them’ module. The code accumulator inside the modulem’ is reset
to ensure the code is only appended once to the resulting module.

1 | Sqrt e ->
2 let m' = doCodegen env e m // "e" is the argument given to the sqrt

function
3 // the code generated for "e" is placed within the f32.sqrt instruction
4 m'.ResetAccCode().AddCode([ (F32Sqrt(m'.GetAccCode()), "sqrt of f32 value"

) ])

Figure 4.21: Code generation of square root function

Max and min functions The operators have the function of finding the maximum or
minimum value in a set of two values.

Themax andmin functions are implemented similarly and are therefore handled together.
The approach differs between integers and floating point values because WebAssembly
includes specialized instructions for finding the maximum and minimum values for floating
points.

The code snippet 4.22 shows the instruction pattern generated for finding the maximum
and minimum of an integer value. Both follow the same general pattern of pushing the two
values that should be applied to the operand stack in two pairs. The first pair is then used
to evaluate the relationship between the two by either using the i32.gt_s or the i32.lt_s,
short for greater than, and less than. The _smeans that the instructions assume the value
to be a signed integer. i32.gt_s leaves a 1 on the operand stack if the first argument is the
largest value of the two; otherwise, it leaves a 0. lt_s leaves a 1 when the first argument
is less than the second argument, otherwise 0. The select instruction picks the value from
the second pair of values remaining on the stack.

1 ;; max
2 i32.const 12 ;; push 12 on stack
3 i32.const 10 ;; push 10 on stack
4 i32.const 12 ;; push 12 on stack
5 i32.const 10 ;; push 10 on stack
6 i32.gt_s ;; which value is greater?
7 select ;; select the greater value
8
9 ;; min

10 i32.const 12 ;; push 12 on stack
11 i32.const 10 ;; push 10 on stack
12 i32.const 12 ;; push 12 on stack
13 i32.const 10 ;; push 10 on stack
14 i32.lt_s ;; which value is smaller?
15 select ;; select the lesser value

Figure 4.22: Wasm instructions for max and min on intergers
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When compiling for floating point values, the f32.max and f32.min instructions can be
used. Therefore, the instructions needed to perform the minimum or maximum compu­
tation are reduced to only three. The two input values are pushed to the stack and then
consumed by one of the before­mentioned instructions, leaving the correct value on the
stack.

1 ;; max
2 f32.const 42.000000 ;; push 42.0 on stack
3 f32.const 12.000000 ;; push 12.0 on stack
4 f32.max ;; select the greater value
5
6 ;; min
7 f32.const 42.000000 ;; push 42.0 on stack
8 f32.const 12.000000 ;; push 12.0 on stack
9 f32.min ;; select the lesser value

Figure 4.23: Wasm instructions for max and min on floating points

4.3.6.4 Variables
When a variable is compiled, the process generates instructions to retrieve its value,
based on where it is stored. Consider the code sample 4.24. The VarStorage from the
code generation environment is inspected to determine the storage type. A variable can
be stored as a local, global, or closure offset in memory.

In the case of the local or global storage types the data can be fetched by using a label that
VarStorage maps to, and the instructions local.get or global.get can be used to retrieve
the value.

In the case of the offset storage type, the address of the closure environment will be
available in the function’s first argument. The reason for this will be explained in sec­
tion 4.3.6.19. With the address of the closure environment, the offset can be statically
applied, directing it to the right position in memory. Subsequently, the load instruction
can be used to fetch the value.

Upon returning, the instructions are added to the current module, creating a new module
with the access code appended.
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1 | Var name ->
2 let instrs: List<Commented <WGF.Instr.Wasm>> =
3 // find the variable in the storage environment
4 match env.VarStorage.TryFind name with
5 // push local variable on stack
6 | Some(Storage.Local l) -> [ (LocalGet(Named(l)), $"get local var: {l}

") ]
7 // push global variable on stack
8 | Some(Storage.Global l) -> [ (GlobalGet(Named(l)), $"get global var:

{l}") ]
9

10 | Some(Storage.Offset(i)) -> // push variable from offset on stack
11 // get load instruction based on type
12 let li: WGF.Instr.Wasm =
13 match (expandType node.Env node.Type) with
14 | t when (isSubtypeOf node.Env t TFloat) ->
15 F32Load_(None, Some(i * 4), [ (LocalGet(Index(0)), "get

env pointer") ])
16 | _ -> I32Load_(None, Some(i * 4), [ (LocalGet(Index(0)), "get

env pointer") ])
17
18 [ (li, $"load value at offset: {i * 4}") ]
19 | _ -> failwith "could not find variable in var storage"
20
21 m.AddCode(instrs) // append instructions to module

Figure 4.24: Code generation for variables

4.3.6.5 Input/Output and interaction with host system
All functionality relying on the host system is fairly trivial in code generation due to the
WebAssembly import feature. Functions are imported by name and namespace. The
import statement must match the function signature that the host system provides. These
function signatures are either based on WASI or HyggeSI.

WGF will make sure to place imports grouped at the top of theWATmodule. The imported
functions can be used globally in the module. WGF makes sure that imports are unique,
meaning that multiple imports of the same function will result in only one import statement
in the WATmodule. When a function is imported, it can be invoked from within the module
using the call instruction supplied with the label of the function.

Read integer or floating point value as input When encountering a ReadInt­node, the
readInt function is imported and invoked. The embeddeder will retrieve an integer value
and then return control to the module instance. Code snippet 4.25 shows how this is
implemented for HyggeSI. While HyggeSI will push the input value directly to the operand
stack, WASI will put the value in an allocated memory space, which is then loaded to the
stack. The read float operation is identical, with the only difference being the use of the
readFloat function from HyggeSI.

Printing to console The functions print and println print to the standard output. See
code snippet 4.26 showing the implementation.

The functions print and println can handle multiple types, including float, int, and string.
This is reflected in the code generation process, where the functionality must be mapped
to type­specific functions in the HyggeSI. Printing follows a similar pattern of importing the
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1 | ReadInt ->
2 m // current module 'm'
3 // import and call to host function
4 .AddImport(getImport "readInt") // import 'readInt' function
5 .AddCode([ (Call("readInt", m.GetAccCode()), "call host function") ])

Figure 4.25: Read integer value from outside module

required function and subsequently applying it. The expression representing the argument
of the print or println function is evaluated. In the case that the expression evaluates to a
float or an int, the instruction produced will, at runtime, evaluate to a i32 or f32 value on
the stack. In the case of a string, an i32 representing an offset in linear memory is left on
the stack.

1 | PrintLn e
2 | Print e ->
3 let m' = doCodegen env e m
4 let nl = if node.Expr = PrintLn e then 1 else 0 // use new line if printLn
5 match (expandType e.Env e.Type) with
6 | t when (isSubtypeOf node.Env t TFloat) ->
7 m' // perform host (system) call
8 .ResetAccCode()
9 .AddImport(getImport "writeFloat") // import writeF function

10 .AddCode([ (Call("writeFloat", m'.GetAccCode() @ [ (I32Const nl, "
newline") ]), "call host function") ])

11 | t when (isSubtypeOf node.Env t TString) ->
12 let m'' = // import writeS function
13 m
14 .AddImport(getImport "writeS")
15 .AddCode(
16 // push string pointer to stack
17 [ (I32Load(m'.GetAccCode()), "Load string pointer") ]
18 @ [ (I32Load_(None, Some(4), m'.GetAccCode()), "Load

string length")
19 (I32Const nl, "newline") ]
20 )
21 (m' ++ m'') // perform host (system) call
22 .ResetAccCode()
23 .AddCode([ (Call("writeS", m''.GetAccCode()), "call host function"

) ])
24 | _ ->
25 let m'' = m'.AddImport(getImport "writeInt") // import writeInt

function
26 m'' // perform host (system) call
27 .ResetAccCode()
28 .AddCode([ (Call("writeInt", m''.GetAccCode() @ [ (I32Const nl, "

newline") ]), "call host function") ])

Figure 4.26: Printing to console using host system

The generated code is placed within the call instruction alongside a constant value signi­
fying whether the behavior of print or println should be used. When the function is invoked
at runtime, the values will be consumed by the call instruction.
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4.3.6.6 Assignments
An assignment is done in Hygge by using the following syntax: target ← value. An
assignment can be of the three kinds shown in table 4.1.

Assignment target Syntax
Variable x <- value
Array element arrayElem(arr, 0) <- value
Structure (struct or tuple) x.f <- value or x._1 <- value

Table 4.1: Assignment Operations

To understand how each of these cases is implemented, they will be addressed individu­
ally, starting with assigning to a variable.

In the AST, an assignment is expressed by a Assign node. The Assign node carries a
target and value, the expression of target must evaluate to one of the scenarios shown in
table 4.1. Pattern matching is used to determine how to proceed.

Assignment to variable When a variable is on the left­hand side of the assignment
expression, the value on the right­hand side should be written to that variable. Consider
the code snippet 4.27.

The Var­node is unpacked to obtain the name of the target variable. The VarStorage
determines the storage type based on the name. The lookup should result in a label of a
variable or an offset. Thus, only three scenarios have to be considered:

• The variable is local

• The variable is global

• The variable is part of a closure

For a local variable, the right­hand­side node of the Assign­node is evaluated to a value.
That value is then stored in the local target variable using the instruction local.tee. This
will leave the value stored on the stack. It is the same for a global variable with the only
difference that the local.tee instruction is substituted for a global.set and global.get.

For a target variable inside a closure, the address of the closure is pushed to the stack,
and the offset corresponding to the particular variable is used to compute the address in
memory where the variable’s current value is located. The right­hand­side node of the
Assign­node is evaluated to a value stored using the address. Finally, the newly stored
value is pushed to the stack.
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1 | Var(name) -> // left-hand-side is a variable
2 match env.VarStorage.TryFind name with
3 | Some(Storage.Local l) -> // is local var
4 value'
5 .ResetAccCode()
6 .AddCode([ (LocalTee(Named(l), value'.GetAccCode()), "set local

var") ])
7 | Some(Storage.Global g) -> // is global var
8 value'
9 .ResetAccCode()

10 .AddCode(
11 [ (GlobalSet(Named(g), value'.GetAccCode()), "set global var")
12 (GlobalGet(Named(g)), "get global var") ]
13 )
14 | Some(Storage.Offset(i)) -> // is offset var
15 // store value in linear memory ..
16 | _ -> failwith "not implemented"

Figure 4.27: Assign a value to variable

Assignment to array element In this case, the array element access is encapsulated
(by an assignment) as the left­hand side expression.

1 | ArrayElement(target, index) ->
2 let selTargetCode = doCodegen env target m // address to target array
3 let indexCode = doCodegen env index m // index to position
4 let rhsCode = doCodegen env value m // value on the right-hand-side
5 // Check index >= 0 and index < length
6 let indexCheck = // code that check that index is in bounds
7 let storeInstr = // determine store instruction based on array type
8 match (expandType value.Env value.Type) with
9 | t when (isSubtypeOf value.Env t TFloat) -> F32Store

10 | _ -> I32Store
11 let instrs = // Calculate address of position and store new value there
12 [ (storeInstr (
13 [ (I32Add(
14 [ (I32Load(selTargetCode.GetAccCode()), "load data

pointer") // load the address to array
15 (I32Mul( // multiply index by 4
16 indexCode.GetAccCode() // index on stack
17 @ [ (I32Const 4, "byte offset") ]
18 ),
19 "multiply index with byte offset") ]
20 ),
21 "add offset to base address") ]
22 @ rhsCode.GetAccCode() // leave value on the stack
23 ),
24 "store value in elem pos") ]
25 @ rhsCode.GetAccCode()
26 // combine the compiled code
27 (rhsCode.ResetAccCode() + indexCode.ResetAccCode() + selTargetCode.

ResetAccCode()).AddCode(indexCheck @ instrs)

Figure 4.28: Assign a value to element in array
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The index is checked to ensure it is in the bounds of the array, that target points to. The
index is multiplied by 4 bytes and added to the address of target. The new value is stored
at the calculated address and left on the stack. The position has to be calculated at
runtime since the address is only known then. Depending on the type of the target array,
the store instruction used is either i32.store or f32.store.

Assignment to structure Code example 4.29 shows how this is represented in a Hygge
program.

1 // creating a struct with the field 'f' with the value 3
2 let s: struct {f: int} = struct {f = 1 + 2};
3 s.f <- 5; // assign a new value to field 'f'
4 assert(s.f = 5) // assert the value of field 'f' is now 5.

Figure 4.29: Assign a value to struct field in Hygge

An assignment to a structure field is an Assign­node where the left­hand side is a field
selection. The FieldSelect is deconstructed with pattern­matching and consists of a target
and a field. The target is a node that resolves to the address of the struct and the field is
the name of the selected field as a string. The right­hand­side node of the assign­node
is evaluated to a value. The value is stored in the memory space that matches the struct
field given.

The target type is then expanded to evaluate the actual type which allows for subtyping.
At this point, the compiler should fail if the target is not of type TStruct since this is the
only valid target type of this operation. The TStruct type contains the type information
about the struct, meaning a list of the name and type of each field in the struct.

The index of the applicable field is found; this is done because each field’s data is placed
sequentially in order into memory, each field occupying a fixed number of bits, in this case
32­bit. Therefore, the index can be used to compute the byte offset of the field statically.

Then, the left­hand side expression, which represents the type of the value to store in the
struct, is expanded and evaluated. The type of value is needed since WebAssembly has
different instructions to load and store integers and floating points.

Storing integers and floating point values in a field are similar; therefore, the process only
describes ones. Note that the load and store instructions differ in the two cases.

First, the value is stored. The store instruction will take an optional offset as an immediate
offset computed based on the index. The store instruction consumes a memory address
and a value to store from the operand stack. Therefore, the compiled code from the target
and the right­hand side are nested inside the store instructions. This is all nested in a load
that, similarly to the store, takes an offset and a memory address and leaves the value
just stored on the operand stack. This could also have been accomplished by just leaving
the instructions of the right­hand side node as the last piece of code, though this store
load pattern ensures that the value found in memory is left on the operand stack.
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1 | FieldSelect(target, field) ->
2 let selTargetCode = doCodegen env target m
3
4 /// Code for the 'rhs' expression of the assignment
5 let rhsCode = doCodegen env value m
6
7 match (expandType target.Env target.Type) with
8 | TStruct(fields) ->
9 /// Names of the struct fields

10 let fieldNames , _ = List.unzip fields
11 /// offset of the selected struct field from the beginning of
12 /// the struct
13 let offset = List.findIndex (fun f -> f = field) fieldNames
14
15 /// Assembly code that performs the field value assignment
16 let assignCode =
17 match (expandType name.Env name.Type) with
18 | t when (isSubtypeOf value.Env t TUnit) -> [] // Nothing to

do
19 | t when (isSubtypeOf value.Env t TFloat) ->
20 // load value just to leave a value on the stack
21 [ (F32Load_(
22 None,
23 Some(offset * 4),
24 selTargetCode.GetAccCode()
25 @ [ (F32Store_(None, Some(offset * 4), selTargetCode

.GetAccCode() @ rhsCode.GetAccCode()),
26 "store float in struct") ]
27 ),
28 "load float from struct") ]
29 | _ ->
30 // load value just to leave a value on the stack
31 [ (I32Load_(
32 None,
33 Some(offset * 4),
34 selTargetCode.GetAccCode()
35 @ [ (I32Store_(None, Some(offset * 4), selTargetCode

.GetAccCode() @ rhsCode.GetAccCode()),
36 "store int in struct") ]
37 ),
38 "load int from struct") ]
39
40 // Put everything together
41 assignCode ++ (rhsCode.ResetAccCode() + selTargetCode.ResetAccCode

())
42 | _ -> failwith "failed to assign to field"

Figure 4.30: Assignment to a struct field

Multiple assignment Multiple assignment refers to a type of assignment statement
where a single value is assigned to two or more variables simultaneously. In Hygge,
this can be observed as x ← y ← z ← 0, where the variables x, y, and z are assigned
zero in a single statement.
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1 let mutable x: float = 1.0f;
2 let mutable y: float = 2.0f;
3 let mutable z: float = 3.0f;
4
5 x <- y <- z <- x + y + z

Figure 4.31: Example of multiple assignments in Hygge

The code example 4.31 results in the sequence of instructions shown in 4.32. First, the
initial values are set for each variable as part of their declaration by the let­binders. Then,
the right­hand side of the multiple assignment is evaluated. In this case, this means com­
puting the sum of the involved variables, becoming the value that should be assigned to
all variables left of an assignment. The assignment itself is done using the local.tee in­
struction. It will set the variable with a specific label and leave the value on the stack. This
value can then be used for the next assignment, making it possible to chain assignments
indefinitely. The last local.tee leaves the result on the stack.

1 ;; Code produced by the let binders.
2 ;; Set the initial values of each variable
3 f32.const 1.000000
4 local.set $var_x
5 f32.const 2.000000
6 local.set $var_y
7 f32.const 3.000000
8 local.set $var_z
9

10 ;; Computing sum of (x + y + z)
11 local.get $var_x
12 local.get $var_y
13 f32.add
14 local.get $var_z
15 f32.add
16
17 ;; Do the assignment to the variables (x, y, z)
18 local.tee $var_z
19 local.tee $var_y
20 local.tee $var_x ;; <- leaves result on stack

Figure 4.32: Example of multiple assignment in WAT

This implementation allows all the assignment types shown in table 4.1 to work seamlessly
since they all evaluate to a single value. The code in 4.32 was generated from test case
013­assign­multi­vars­combine.hyg.

4.3.6.7 Compute-assign operators
Compute­assign operators are implemented by rewriting an Assign­node to a regular
assignment. The rewritten assignment is assigned to the left­hand side. The right­hand
side of Assign­node is given a node representing an arithmetic operation between the
left­hand and right­hand sides.
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1 | AddAsg(lhs, rhs) ->
2 doCodegen
3 env
4 { node with
5 Expr = Assign(lhs, { node with Expr = Add(lhs, rhs) }) }
6 m

Figure 4.33: Gode generation for addition assignment operator

Code example 4.33 shows how the addition assignment operator is implemented. The im­
plementation of the other compute­assign operators is very similar and the only difference
is the arithmetic operation node, in this case, it is an Add­node.
4.3.6.8 Pre- and post-increment and decrement operators
Pre­ and post­increment and decrement operators are rewritten to an assignment that
either adds or subtracts 1 from the left­hand side, representing the target variable. An as­
signment leaves the variable’s value on the stack after it has been written to. This means
that the pre­operator can be rewritten to an assignment without any further modifications.
On the other hand, the post­operator has to leave the value before it has been modified.
This is accomplished as seen in code example 4.34, by first leaving the evaluated value of
the variable and then, at the end, dropping the value that is produced by the assignment.

This leads to an unnecessary code and could also be done by using a virtual register.
This would be a much more complex code since it would have to handle all the cases that
the assignment does. Furthermore, some of the unnecessary instructions are removed
later in the optimization phase. Therefore, the simpler way of handling this was chosen.
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1 | PostIncr(e) ->
2 let instrs =
3 match (expandType e.Env e.Type) with
4 | t when (isSubtypeOf e.Env t TInt) ->
5 let assignode =
6 { node with
7 Expr =
8 Assign(
9 e,

10 { node with
11 Expr = Add(e, { node with Expr = IntVal 1 }) }
12 ) }
13 (doCodegen env e m) + (doCodegen env assignode m) // <-- putting

original value on the stack first
14 | t when (isSubtypeOf e.Env t TFloat) ->
15 let assignode =
16 { node with
17 Expr =
18 Assign(
19 e,
20 { node with
21 Expr = Add(e, { node with Expr = FloatVal 1.0f

}) }
22 ) }
23
24 (doCodegen env e m) + (doCodegen env assignode m) // <-- putting

original value on the stack first
25 | _ -> failwith "not implemented"
26 instrs.AddCode([ Drop ])

Figure 4.34: Gode generation for post­increment

4.3.6.9 Conditional statements
WebAssembly provides an if­else statement which makes the translation from the AST
node to the IR fairly straightforward. Consider code sample 4.35. The condition­node,
”true”­branch node, and ”false”­branch node are all evaluated. The WebAssembly If in­
struction is a control instruction and therefore requires a so­called block type. This is the
type that the if­block will evaluate to. This is done by expanding the node type and then
mapping the type to subsequent WGF type. Then, all the instructions can be resembled
into the WGF If representation. The ”false”­branch code is encapsulated in an option
because this value doesn’t need to be there forWGF to produce valid code.
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1 | AST.If(condition , ifTrue, ifFalse) ->
2 let m' = doCodegen env condition m // module of the condition
3 let m'' = doCodegen env ifTrue m // module of the "true"-branch
4 let m''' = doCodegen env ifFalse m // module of the "false"-branch
5 // get the return type of the ifTrue branch and, subsequently , the ifFalse

branch
6 let resultType = (expandType node.Env node.Type)
7 // find block type
8 let mappedResultType = mapType resultType
9 // combine modules

10 (m' + m'' + m''')
11 .ResetAccCode() // reset the instruction accumulator
12 // reassemble the module components
13 .AddCode(C [ (If(mappedResultType , m'.GetAccCode(), m''.GetAccCode(),

Some(m'''.GetAccCode()))) ])

Figure 4.35: Code generation for conditional statements

4.3.6.10 Assert function
The intrinsic assert function is used to validate the correct execution of test programs. An
example can be seen in code snippet 2.3. The code snippet 4.36 shows the generated
code of an invocation of the assert function. The expression given to the assert function is
evaluated and placed as the condition of the if instruction. This condition is then inverted,
so only if the boolean expression is false will the ’then’­block be executed. If the ’then’­
block is executed is the exit_code set to 42 and the program is terminated with a trap.
The number 42 signals an error to the host environment. The program will have exit code
0 at normal execution.

1 (if
2 (i32.eqz ;; invert assertion
3 (i32.eq ;; equality check
4 ;; actual condition
5 ;; ...
6 )
7 )
8 (then
9 (global.set $exit_code ;; set exit code

10 (i32.const 42) ;; error exit code push to stack
11 )
12 (unreachable) ;; exit program
13 )
14 )

Figure 4.36: Code generation for the assert function

4.3.6.11 Short-circuiting logic operators
As part of the logic operators, short­circuiting conjunction and disjunction were imple­
mented just as regular logical operators. The nodes comprised a left­hand and right­hand
side expression that are both expected to evaluate to a boolean value.

The logical conjunction and (&&) and The logical disjunction or (||) are different from the
regular and and or, because they use short­circuit evaluation[56].
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In the case of the short­circuiting logical conjunction, if the left­hand side evaluates to
true, the next boolean expression must be evaluated; otherwise, it should stop evaluation
immediately. Consider the implementation shown in 4.37. The If instruction is used to
accomplish the short­circuiting behavior. This is done by taking the left­hand side and
using it as the if statement’s condition. If the value is true, the value 1 is pushed to the
stack. No further actions are taken. Otherwise, if the ’else’­branch is taken and the right­
hand side is evaluated, this will either leave a 1 or 0 on the stack.

In the case of logical disjunction, the left­hand side expression is still used as the condition,
but a truthy value results directly in a 1 pushed to the stack, and evaluation is stopped.
Otherwise, the evaluation of the expression continues in the ’else’­branch.

1 // short circuit and
2 | ShortAnd(e1, e2) ->
3 doCodegen
4 env
5 { node with
6 Expr = AST.If(e1, e2, { node with Expr = IntVal 0 }) }
7 m
8 // short circuit or
9 | ShortOr(e1, e2) ->

10 doCodegen
11 env
12 { node with
13 Expr = AST.If(e1, { node with Expr = IntVal 1 }, e2) }
14 m

Figure 4.37: Gode generation for short­circuiting operators

4.3.6.12 Structs
This section will describe the code generation of Structs. Notice that assignments to a
struct is described in section 4.3.6.6.

Tuples are enabled through structs and are placed in memory as a struct. This conversion
is done in the compiler’s front­end and is therefore not further described in this report.

Struct constructor Structs is one of the basic building blocks for Hygge. Structs are
parsed by reference and are dynamically allocated in memory. The needed space is
computed as number of fields × 4 bytes. The memory allocation process will yield an
address pointing to the position in memory where the data of the struct can be placed.
The memory address has to be used multiple times and is therefore stored in a i32 local
temporary variable. The temporary variable can be seen as a virtual register.

After this, the code for initializing each field in memory is generated by folding over in­
dexed field names and their types. First, the address of the current field is found by the
calculation below:

fieldoffset = (index× 4 bytes) (4.1)
fieldpos = fieldoffset + address of struct (4.2)
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The fieldoffset can be computed during compilation because the index is known at com­
pile time. However, the addition operation must occur during runtime where the struct’s
address is determined. To obtain the address of the struct, we load it using the temporary
local variable. Next, we generate the code for initializing the field’s data, which, when
executed, will resolve to its value. Finally, this resolved value is stored in memory at the
calculated address. Based on the value type that must be stored, either a f32.store or a
i32.store is used. The code generated for initializing the fields is accumulated and con­
catenated sequentially. At the very end, the temporary local variable pointing to the start
address is pushed to the stack to leave the address on the stack.

Struct field access Accessing a field in a struct involves reading a specific field by
name. Consider code snippet 4.38. The code generation of the field access begins by
evaluating the target address. This is the value left on the stack by the struct constructor
in Section 4.3.6.12. The type of the target is checked. This should always be of type
TStruct. The field’s offset is determined by its index, indicating its position within the
struct. The byte offset can then be statically calculated as described in Section 4.3.6.12.
Depending on the field type, either an i32 or an f32 load instruction, is used to retrieve
the value from memory.

1 | FieldSelect(target, field) ->
2 let selTargetCode = doCodegen env target m // address to target struct
3
4 let fieldAccessCode = // code for accessing the struct field
5 match (expandType target.Env target.Type) with // expanding and

matching target type
6 | TStruct(fields) -> // target is a struct
7 let fieldNames , fieldTypes = List.unzip fields // unzipping names

and types
8 let offset = List.findIndex (fun f -> f = field) fieldNames //

find index of field
9

10 // Retrieve value of struct field
11 match fieldTypes[offset] with
12 | t when (isSubtypeOf target.Env t TUnit) -> [] // Nothing to do
13 | t when (isSubtypeOf target.Env t TFloat) -> // load float
14 [ (F32Load_(None, Some(offset * 4), selTargetCode.GetAccCode()

), $"load field: {fieldNames[offset]}") ]
15 | _ -> // load int (address), bool
16 [ (I32Load_(None, Some(offset * 4), selTargetCode.GetAccCode()

), $"load field: {fieldNames[offset]}") ]
17 // target should only could be a struct
18 | t -> failwith $"BUG: FieldSelect codegen on invalid target type: %O{

t}"
19
20 // Put everything together: compile the target, access the field
21 selTargetCode.ResetAccCode()
22 ++ m.AddCode(
23 C [ Comment "Start of field select" ]
24 @ fieldAccessCode
25 @ C [ Comment "End of field select" ]
26 )

Figure 4.38: Code generation of struct field access
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4.3.6.13 Strings
Strings are statically allocated at compile time and are written to the allocated space in
memory when the module is instantiated. This is accomplished by utilizing data section
entries with data strings as described in 4.3.5.1. Strings are parsed by reference.

Figure 4.39 shows how these are represented in the WAT module. Strings are interpreted
as the Unicode standard UTF-8. This allows this implementation of Hygge to represent
the entire Unicode character set. An earlier version of the implementation strings was
interpreted as the Unicode UTF-16 format. See appendix F for more details.

1 (data (i32.const 0) "\0c\00\00\00\12\00\00\00\12\00\00\00")
2 (data (i32.const 12) "hygge println test")
3 (data (i32.const 30) "\2a\00\00\00\10\00\00\00\10\00\00\00")
4 (data (i32.const 42) "hygge print test")
5 (data (i32.const 101) "\71\00\00\00\03\00\00\00\01\00\00\00")
6 (data (i32.const 113) "0x2705") ;; Unicode Character "U+2705"

Figure 4.39: Hexadecimal data strings in WebAssembly WAT module

When the module has been instantiated, the data will be placed in memory as a structure
containing the tuple (d, s, l), where d is the address of the string, s is the size of the string
in bytes and l is the number of characters in the string. How the tuple (d, s, l) is stored
in memory is shown in Figure 4.40. The arrow pointing to the data address field is the
pointer left on the stack when evaluating the StringVal­node.

Dynamic data

"This is the actual
string data"

Data addr Size in bytes Length

Memory

Figure 4.40: Strings in memory

As part of its development tools, Google Chrome has a memory inspector. fig. 4.41 shows
an example of this. In this case, the length and the size in bytes of the string is 18, meaning
that it is 12 in hexadecimal. This value will be the same when only American Standard
Code for Information Interchange (ASCII) characters are used.
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Figure 4.41: String in Arraybuffer shown in Chrome dev­tools

The intrinsic operation stringLength(s) is used for obtaining the length of a string.

1 | StringLength e ->
2 let m' = doCodegen env e m
3
4 m'
5 .ResetAccCode()
6 .AddCode([ (I32Load_(None, Some(8), m'.GetAccCode()), "load string

length") ])

Figure 4.42: Code generation of StringLength function

Consider code snippet 4.42. Foremost, the node e should evaluate to an address pointing
to the structure containing the tuple (d, s, l), pushing the address to the operand stack.
This address is then used to load the string length by applying an offset of 8 bytes.

4.3.6.14 Arrays
This section will describe the code generation of arrays. Arrays are dynamically allocated
in linear memory and parsed by reference. This encompasses an array constructor to
create array structures in memory and common array operations. Arrays in Hygge are
zero­indexed and can only hold one data type for each array.

The implemented functionality is listed below and matches what is found in the specifica­
tion of HyggeWasm found in appendix A.1.

• Create and initialize an array

• Retrieve the length of an array

• Read from a specific index in an array

• Write to a specific position in an array

• Slice array into a sub­array

A table of the operations and their syntax in Hygge can be seen in table 2.6.

Array constructor The array constructor will dynamically allocate memory during run­
time in the fashion described in section 3.3.4.1, followed by populating the designated
memory space with a specified initialization value. An example of an Array in Hygge can
be seen in 4.43. The constructor takes two arguments: the length of the array and an
initial value.
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1 let size: int = 8;
2 let initValue: int = 0;
3 let arr: array {int} = array(size, initValue)

Figure 4.43: Use of the Array constructor

Hygge does not allow arrays of length zero. Therefore, the length is checked at runtime
to be length > 0. If this is not the case, the program’s execution is terminated. An array
instance is implemented as a struct containing a pointer to the actual data in memory and
the array’s length. See Figure 4.44 for an illustration of this.

data length

0,1,2,3,4 .. n

linear memory

Figure 4.44: Structure in memory defining array

The memory segment designated for the array instance is initialized at runtime by iterating
through memory in 4­byte chunks and storing the initial value provided in the constructor
at each position.

WebAssembly contains instructions for bulk memory operations such as memory.fill,
but this instruction stores per byte [57], and it was therefore impossible to align with 4
bytes.

Array slice Array slices work similarly to slices in JavaScript [58], producing a shallow
copy of the original array [59], thus referencing the same actual data in memory as the
original array. This is illustrated in fig. 4.46, which shows an array of 12 elements that has
been sliced into a subarray of size 4. If the sliced array changes its value at index zero,
the original array will contain the new value at index 4. A test program can be seen in
code snippet 4.45.

An array can be sliced unlimited times and can overlap each other. Since the sliced array
instance has the same structure as an ordinary array instance, all array operations can
also be performed on it, including slice.
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1 // create the two arrays
2 let original: array {int} = array(12, 0);
3 let sliced: array {int} = arraySlice(original , 4, 8);
4 // fill the first array with numbers
5 let mutable i: int = 0;
6 while (i < arrayLength(original)) do {
7 arrayElem(original , i) <- i;
8 i <- i + 1
9 };

10 // assert that the second array contains the correct numbers
11 assert(arrayElem(sliced, 0) = 4);
12 assert(arrayElem(sliced, 1) = 5);
13 assert(arrayElem(sliced, 2) = 6);
14 assert(arrayElem(sliced, 3) = 7)

Figure 4.45: Slicing array in Hygge

12

linear memory

4

Original Sliced

12
4

0 1 2 3 4 5 6 7 8 9 10 11

Figure 4.46: Example of array instance and sliced array instance in memory

Ensuring data integrity when working with arrays When reading and writing to an
array element, there is an index to an element supplied. To ensure that these array oper­
ations only operate on the defined array’s memory space, the index should be validated
at runtime to be within the array’s bounds.

The bounds of the array index are defined as:

• Index is greater or equal to 0

• Index is smaller than the array length

The bounds are implemented as guards with inverted conditions of the above mentioned
bounds. If a guard condition is computed to a truthy value, the exit_code is set to 42
and then a trap is triggered with an unreachable instruction. An example of the code
generated for checking the bounds can be seen in 4.47.
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1 (if
2 (i32.lt_s ;; check if (index < 0)
3 (i32.const 0) ;; push index to stack
4 (i32.const 0) ;; push zero to stack
5 )
6 (then
7 (global.set $exit_code ;; set exit code
8 (i32.const 42) ;; error exit code pushed to stack
9 )

10 (unreachable) ;; exit program
11 )
12 )
13 (if
14 (i32.ge_s ;; check if (index > length)
15 (i32.const 0) ;; push index to stack
16 (i32.load offset=4
17 (global.get $arr_var) ;; get array length
18 )
19 )
20 (then
21 (global.set $exit_code ;; set exit code
22 (i32.const 42) ;; error exit code push to stack
23 )
24 (unreachable) ;; exit program
25 )
26 )

Figure 4.47: Checking bound of array

4.3.6.15 Discriminated union-type constructor
The discriminated union­type constructor produces a union­type instance. A union­type
instance consists of a label and some data. Notice that the data can be a unit, effectively
representing a null value.

Consider the code snippet 4.48 to elucidate the concept further. Code snippet 4.48 show
cases of the use of the union­type constructor in Hygge. The constructor is utilized in lines
7 and 8. In line 7, the constructor is used with the label ”Some” and the value of 42, and
in line 8, the constructor is used with the label ”None”, encapsulating a unit value.

A union­type instance can be used with pattern matching. On line 10 the first union­type
instance stored in variable x is used with pattern matching. This will match the instance
against the patterns inside the match block. In this scenario, the first pattern will match
the instance, leading to printing 42.
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1 type t = union {
2 Some: int;
3 None: unit
4 };
5
6 // union-type constructor
7 let x: t = Some{42};
8 let n: t = None{()};
9

10 match x with {
11 Some{v} -> println(v);
12 None{_} -> println("None")
13 }

Figure 4.48: Use of the Union constructor

WebAssembly does not directly support union types. Consequently, a method for repre­
senting instances of union types must be designed.

The approach by HyggeWasm to represent the union­type instance, is with a struct con­
taining two fields. Therefore, union­type instances are dynamically allocated into linear
memory. The struct will have the size of 2 ∗ 4 bytes since every field is 32 bit.

To accomplish this, the expression is rewritten to a struct to reuse the code generation
for structures. The first field contains the label, and the second is the data. Code snippet
4.49 shows how this is implemented.

Comparing the label’s string values is hard to do in WebAssembly. Thus, the labels are
not stored as string values. An unique integer identifier is assigned to each label to resolve
this issue. This allows for comparisons of labels by comparing the distinct integer label
identifiers. The identifiers are generated using Util.genSymbolId. This functionality was
part of the original RISC­V back­end.

In the case of a unit value, the expression is substituted for an integer value, simply be­
cause the structure expects a value that can be stored in memory. This value is never
read. It could be a further work improvement to let structs handle unit values.
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1 | UnionCons(label, expr) ->
2 // compute label id
3 let id = env.SymbolController.genSymbolId label
4 // create node for label
5 let idNode = { node with Expr = IntVal id }
6 // in case there is no data, aka a unit - we need to add a zero
7 let data =
8 match (expandType expr.Env expr.Type) with
9 | TUnit -> { node with Expr = IntVal 0 } // unitvalue

10 | _ -> expr
11 // rewrite as struct
12 let structNode =
13 { node with
14 Expr = Struct([ ("id", idNode); ("data", data) ]) }
15 // codegen structNode
16 C [ Comment "Start of union contructor" ]
17 ++ (doCodegen env structNode m).AddCode([ (Comment "End of union

contructor") ])

Figure 4.49: Code generation for the discriminated union­type constructor

4.3.6.16 Pattern matching
Implementing pattern matching in WAT involves encapsulating all cases within a block
structure. Every case becomes an if­then block where the condition checks that the case
label identifier equals the label of the matched union­type instance. The block allows the
cases to branch out seamlessly, ensuring that no additional conditions need evaluation
during execution. Although this might not be strictly necessary due to the uniqueness of
labels and their corresponding label IDs, Hygge’s type system inherently prohibits dupli­
cate case labels in a match expression. This design eliminates the need for redundant
evaluations when a case has been executed.

The pattern matching may be evaluated to a value; therefore, the block instruction is
annotated with a result type to pass WebAssembly’s type checking. Code snippet 4.50
contains a full example of how the pattern matching is represented in WAT.
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1 (block $match_end (result i32) ;; <-- result type of the block
2 ;; case for id: $1, label: Some
3 (if
4 (i32.eq ;; check if index is equal to target
5 (i32.load ;; load label
6 (global.get $var_x) ;; get local var: var_x, have been promoted
7 )
8 (i32.const 1) ;; put label id 1 on stack
9 )

10 (then
11 (global.set $match_var_x ;; set local var, have been promoted
12 (i32.load offset=4
13 (global.get $var_x) ;; get local var: var_x, have been promoted
14 )
15 )
16 (global.set $var_i ;; set local var, have been promoted
17 (i32.add
18 (global.get $match_var_x) ;; get local var: match_var_x , have been

promoted
19 (i32.const 1) ;; push 1 on stack
20 )
21 )
22 (global.get $var_i) ;; set local var, have been promoted
23 (br $match_end) ;; break out of match
24 )
25 )
26 ;; case for id: $2, label: None
27 (if
28 (i32.eq ;; check if index is equal to target
29 (i32.load ;; load label
30 (global.get $var_x) ;; get local var: var_x, have been promoted
31 )
32 (i32.const 2) ;; put label id 2 on stack
33 )
34 (then
35 (global.set $match_var__ ;; set local var, have been promoted
36 (i32.load offset=4
37 (global.get $var_x) ;; get local var: var_x, have been promoted
38 )
39 )
40 (i32.const 0) ;; push 0 on stack
41 (br $match_end) ;; break out of match
42 )
43 )
44 ;; no case was matched, therefore return exit error code
45 (global.set $exit_code ;; set exit code
46 (i32.const 42) ;; error exit code push to stack
47 )
48 (unreachable) ;; exit program
49 )

Figure 4.50: Anatomy of pattern matching

4.3.6.17 Loops
WebAssembly has some constructs that are not traditionally associated with assembly
languages. Some constructs are the ones used for structured control flow. These are
defined with the structured control instructions described in 2.2.10.
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One of these instructions is the loop. An example of the loop instruction is shown in code
snippet 4.51 in folded form.

1 (loop $label
2 nop
3 )

Figure 4.51: Structured control with loop

The loop structure does not loop on its own. A branch instruction must be placed inside
the loops block to achieve the looping behavior. Unlike the block structure, a branch inside
a loop will jump to the beginning of its scope[27][p. 37].

While­Loop block and loop control structures described above are combined to achieve
the behavior of a While­loop. Consider the code example 4.52.

The block serves as the outermost structure, defining an end­label that can be utilized
for loop termination. Within the block, a nested loop structure is placed. This facilitates a
mechanism for returning to the beginning of the loop.

Upon entering the loop, the condition of the while loop is evaluated as the initial step in the
sequence. The condition determines if the loop should continue or end. The condition
is inverted so a truthy value will result in a jump to the end of the block. If the jump is
not made, it will continue by executing the instructions in the loop body. If the loop body
leaves any value on the stack, a drop is inserted. This is done because control structures
in WebAssembly can return a result, but Hygge does not allow any loop construct to
resolve to a value. At the end, an unconditional jump is performed to reach the beginning
of the loop block in order to reset the loop for the next iteration.

1 (block $loop_exit
2 (loop $loop_begin
3 (br_if $loop_exit ;; if false break
4 (i32.eqz ;; evaluate loop condition
5 ;; the condition itself
6 )
7 )
8 ;; the loop body
9 (br $loop_begin) ;; jump to the beginning of the loop

10 )
11 )

Figure 4.52: Anatomy of a while loop in WAT

Do­While­Loop The implementation of do­while loops begins with the initial generation
of code for the body, guaranteeing the initial execution of the body. The body should not
push a value onto the stack. However, if such an occurrence arises, a drop operation is
performed accordingly.

After the initial loop body, the do­while­loop operation is equivalent to the while­loop.
Therefore, the do­while components are rewritten to a while loop.
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1 | DoWhile(cond, body) ->
2
3 let body' = (doCodegen env body m)
4 // insert drop if body is not unit
5 let mayDrop =
6 if (expandType body.Env body.Type) = TUnit then
7 body'.GetAccCode()
8 else
9 [ (Drop(body'.GetAccCode()), "drop value of the body") ]

10
11 body'.ResetAccCode().AddCode(mayDrop)
12 ++ (doCodegen env { node with Expr = While(cond, body) } m)

Figure 4.53: Code generation of do­while loops

For­Loop Code example 4.54 shows how code generation for a for­loop is performed.
The first step is generating code for the init node. The init­node is typically used to initialize
the counter variable. Variables can not be declared in the initiation scope of the for­loop
due to limitations in the parser. If the init­node produces a value on the stack, this value
is dropped. The initialization instructions generated should be executed as the first action
and are consequently positioned directly before the loop block.

After these preliminary steps, the for­loop, like the do­while loop, can be rewritten as a
regular while loop. The loop body is adjusted to incorporate the original loop body and
the expression that typically updates the counter variable, in that specific sequence. This
ensures that the update instructions are only evaluated after the body has been executed.

1 | For(init, cond, update, body) ->
2 let init' = (doCodegen env init m) ;; compile init
3 let mayDrop = ;; drop if init is not unit
4 if (expandType init.Env init.Type) = TUnit then
5 init'.GetAccCode()
6 else
7 [ (Drop(init'.GetAccCode()), "drop value of init node") ]
8
9 init'.ResetAccCode().AddCode(mayDrop)

10 ++ (doCodegen
11 env
12 {node with Expr=While(cond,{node with Expr = Seq([body; update ])})}
13 m)

Figure 4.54: Code generation of for­loop

4.3.6.18 Functions
This Section will describe how functions and function pointers are implemented in Hygge­
Wasm. First, all functions except the _start are given an internal name with the prefix
”fun_” and are ensured unique names as described in Section 3.3.9. All arguments are
treated as local variables since this is how WebAssembly operates. This means they
are added to the code generation environment as local variables by name. Local vari­
ables that are arguments have the prefix ’arg_’ in front of the name, making it easier to
distinguish between the two.
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Consider code snippet 4.55. Please note that the code snippet 4.55 omits details related
to the heap memory mode for clarity in the description. While Hygge can have nested
functions, WebAssembly can not. Therefore, the nesting is flattened so all functions are
on the top level of theWATmodule. The function compileFunction does this reorganization
of functions. An example can be seen in appendix L.

All lambda terms are compiled using the compileFunction function. The compileFunction
collects all information about a function. This includes a type declaration corresponding
to the function signature and the compiled function body.

When compiling the function body, the code generation environment’s VarStorage con­
tains the arguments as local variables. All the instructions produced by compiling the body
are placed in a module within a temporary code accumulator. The temporary code accu­
mulator contains all function instructions when it returns to compileFunction. At this point,
the body’s code is not directly associated with a function name. To do this, all instructions
are moved from the temporary code accumulator into a named function instance inside
theWGF representation.

1 and internal compileFunction
2 (name: string)
3 (args: List<string * Type.Type>)
4 (body: TypedAST)
5 (env: CodegenEnv)
6 (m: Module)
7 (captured: string list): Module =
8 // map args to their types
9 // and add cenv as argument

10 let argTypes ': Local list = (Some("cenv"), I32) :: (argsToLocals env args)
11 // create function signature
12 let signature: FunctionSignature = (argTypes ', mapType body.Type)
13 // compile function body
14 let m': Module = doCodegen { env with CurrFunc = name } body m
15 // create function instance
16 let f: Commented <FunctionInstance > =
17 ({ locals = m'.GetLocals() // add locals
18 signature = signature // add signature
19 body = m'.GetAccCode() // add all instructions of the function
20 name = Some(Label(name)) }, // add name to function
21 $"function {name}")
22 m'
23 .AddFunction(name, f, true) // add function and type declaration to

module
24 .ResetAccCode() // reset accumulated code
25 .ResetLocals() // reset locals

Figure 4.55: Compile function

Recursive functions For a function to be recursive in Hygge, the recursive let­binder
has to be used. The function’s body is compiled with a VarStorage that includes the
function itself. This ensures that the recursive calls can be resolved within its own body.

Function pointers All imported functions are directly called by name using the call in­
struction. This can be done because it is static, meaning that one call instruction will
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always only call one particular function. Another approach has to be used when the func­
tion can be a value determined at runtime. The following sections describe how this more
flexible approach is designed and implemented.

The overall idea is to use indirection in the form of a look­up table that can translate an
index (integer value) to a function reference.

One of the necessary features is the ability to resolve function index functions by name.
To do this, a global variable is added to the module when compiling a lambda. It has to
be global since the function may be called from any other function within the module.

The name of the global variable is added to the VarStorage in the code generation en­
vironment. VarStorage will map from the variable name or function name to the pointer
name. This is the only use of global variables before promoting local variables. The global
variable is named ”<label of function>*ptr” and is initialized with a memory address. The
address points to a chunk of memory that contains a table index of the function. The table
index is put into memory as a data element. An illustration can be seen in figure 4.56.
This allows the code to treat the function as a simple function that does not capture a clo­
sure environment similar to the ones that do capture. Closures are described in Section
4.3.6.19.

Globals

$fun_f*ptr

Memory

Index to function

Figure 4.56: Function pointer

The function table To enable Hygge programs to parse function references, a look­up
table is created when the first function reference is added. In the WAT module, the table
is named func_table. From here on, this table is referred to as the function table.

Indirect calls via function table To call functions that reside in the function table, the
call_indirect instruction is used. call_indirect will, based on the index, look up in the func­
tion table. This will, in the binary module, map to a function signature in the function
section that will also contain the true address of the instructions of the function. All the
instructions of the function are in a separate code section in the binary format. This is
illustrated in figure 4.57.

This allows the program to determine what function to call at runtime. This approach
is also used to implement function pointers in C/C++ and virtual functions in C++[27, p.
59]. By extension, it is also the mechanism for handling functions as first­class values in
languages such as JavaScript.
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Figure 4.57: Use of function tables with call_indirect

The call_indirect instruction is also given a function type. This type is used during the
validation phase, described in section 2.2.5. The validation phase ensures that the mod­
ule is well­formed. The context of the call_indirect instruction involves checking that the
function signature matches the expected function type. Thus, the value that is pushed
(return value) to the stack after execution matches the instruction flow for the rest of the
program.

Application When an application is compiled the necessary code for resolving the func­
tion reference and the closure environment is produced.

1 | Application(expr, args: List<Node<TypingEnv , Type>>) ->
2 /// compile arguments
3 let argm = List.fold (fun m arg -> m + doCodegen env arg (m.ResetAccCode()

)) m args
4
5 /// generate code for the expression for the function to be applied
6 let exprm: Module = (doCodegen env expr m)
7
8 // type to function signature
9 let typeId = GenFuncTypeID(typeToFuncSiganture env (expandType expr.Env

expr.Type))
10
11 (argm)
12 .ResetAccCode()
13 .AddCode([ Comment "Load expression to be applied as a function" ])
14 .AddCode(
15 [ (CallIndirect(
16 Named(typeId),
17 [ (I32Load_(None, Some(4), exprm.GetAccCode()), "load

closure environment pointer") ]
18 @ argm.GetAccCode() // load the rest of the arguments
19 // load function pointer
20 @ [ (I32Load(exprm.GetAccCode()), "load table index") ]
21 ),
22 "call function") ]
23 )

Figure 4.58: Code generation of an application
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The function’s provided arguments are first evaluated, followed by the specified expres­
sion for application. A type identifier is generated, aligning with a function type declaration
in the type section. Lastly, all generated code is encapsulated within the call_indirect in­
struction for consumption. Since the index and pointer to the closure environment are in
memory, load instructions are inserted to retrieve the data.

Anonymous functions Anonymous functions are, by definition, not given a name by
the programmer. In the AST, an anonymous function is a lambda term that is not encap­
sulated by a Let or LetRec node. An anonymous function is given an internal name by the
compiler that is also visible in the produced WAT code. To make it easier to identify what
anonymous function the name refers to, the name has been constructed to indicate the
relationship between functions. The name $fun_f /anonymous will refer to an anonymous
function declared inside the function f. Subsequently the innermost anonymous function
of fig. 4.59 will be named $fun_sum/anonymous/anonymous.

1 fun sum(a: int): (int) -> (int) -> int = { // <-- Named "$fun_sum"
2 fun (b: int) -> { // <-- Named "$fun_sum/anonymous"
3 fun (c: int) -> { // <-- Named "$fun_sum/anonymous/anonymous"
4 a + b + c
5 }
6 }
7 }

Figure 4.59: Anonymous function naming convention

Global scope and Variable promotion Let­binders in the global scope of the Hygge
program, that do not contain a lambda term, become a global variable through a promo­
tion process. The code snippet 4.60 shows a Hygge program with the variable x in the
program’s global scope that is later used inside a function f. x will be encapsulated inside
the _start in the WAT module. Since x is also read inside the function f, x must be a global
variable so all functions can access it.

1 let x: int = 40; // <-- Variable x becomes global value
2 let f: () -> int = fun() -> 40 + x; // <-- Accsess value of x
3
4 assert(f() = 80)

Figure 4.60: Test case 031­top­level.hyg

The function promoteLocals is responsible for implementing the promotion process. It
takes a list of local variable names as input and generates a new module where all vari­
ables in the list are converted to global variables. Additionally, all instructions that are
related to getting or setting one of the local variables in the list are converted to instruc­
tions that operate on global variables. This transformation is performed by the localSubst
function, which recursively propagates the AST and substitutes all local get and set in­
structions of the specified variable. A section of the localSubst function is provided in
code snippet 4.61.
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1 let rec localSubst (code: Commented <WGF.Instr.Wasm> list) (var: string) :
Commented <WGF.Instr.Wasm> list =

2 match code with
3 | [] -> code // end of code
4 | (LocalGet(Named(n)), c) :: rest when n = var ->
5 [ (GlobalGet(Named(n)), c + ", have been promoted") ] @ localSubst

rest var
6 | (LocalSet(Named(n), instrs), c) :: rest when n = var ->
7 [ (GlobalSet(Named(n), localSubst instrs var), c + ", have been

promoted") ]
8 @ localSubst rest var
9 | (LocalTee(Named(n), instrs), c) :: rest when n = var ->

10 [ (GlobalSet(Named(n), localSubst instrs var), c + ", have been
promoted")

11 (GlobalGet(Named(n)), c + ", have been promoted") ]
12 @ localSubst rest var
13 // block instructions
14 | (Block(l, vt, instrs), c) :: rest -> [ (Block(l, vt, (localSubst instrs

var)), c) ] @ localSubst rest var
15 | (Loop(l, vt, instrs), c) :: rest -> [ (Loop(l, vt, (localSubst instrs

var)), c) ] @ localSubst rest var
16 // more cases ...

Figure 4.61: Variable promotion

4.3.6.19 Closures
When code is generated for a lambda term, it captures and encapsulates the lexical en­
vironment within a struct stored in memory. From this point, this struct is denoted as
the closure environment. The closure environment encloses all the data of the captured
variables[60, section: Captured Variables and Closures] as they existed at the moment
of capture.

After introducing closures some pointers have an additional segment with the address to
the closure environment. Figure 4.62 illustrates the change to function pointers. Given
that the pointer consistently references the index, an application can manage them uni­
formly. When applying a function an address to a closure environment is passed to the
function, in case there does not exist a closure environment the address will be meaning­
less and will never be used.

fun_f*ptr fun_fc*ptr

index index cenv ptr Closure env

Linear memory

Figure 4.62: Function pointer with and without closure

To let the functions access the closure environment a closure conversion is done. Func­
tions are rewritten by adding an argument named cenv, this argument points to a closure
environment if one exists for the function. This alters the function signature in the WAT
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code. The function (int) → int becomes (int, int) → int. This directly corresponds to
the signature in figure 4.63. The cenv argument will always be the first argument in the
signature, meaning that it will have a local variable index of zero. The code snippet 4.55
shows on line 12 how cenv is added to the function signature.

Variables inside the closure environment are resolved via VarStorage and the storage
type offset is used to resolve captured variables.

1 (func $fun_h (;0;) (param $cenv i32) (param $arg_k i32) (result i32)

Figure 4.63: Function signature after rewrite

Closures with shared mutable variables Mutable variables are rewritten to be encap­
sulated inside a struct with one field named value. Code snippet 4.64 shows this rewrite of
the mutable variables if captured. Moreover, all variable access in the scope is rewritten
to a FieldSelect so it will access the field value.

1 let fieldName = "value"
2
3 // create struct with one field called value
4 let structNode =
5 { node with
6 Expr = Struct([ (fieldName , init) ])
7 Type = TStruct([ (fieldName , init.Type) ]) }
8
9 // var node with struct pointer var

10 let varNode =
11 { node with
12 Expr = Var(name)
13 Type = TStruct([ (fieldName , init.Type) ]) }
14
15 // select field value from struct every time var is used
16 let selectNode =
17 { node with
18 Expr = FieldSelect(varNode, fieldName)
19 Type = init.Type }
20
21 // replace every occurrence of the var in scope with the struct FieldSelect
22 let scope' = ASTUtil.subst scope name selectNode
23
24 // node with sequence of let and scope
25 let n =
26 { node with
27 Expr = Let(name, tpe, structNode , scope', export) }
28
29 let m' = (doCodegen env n m)

Figure 4.64: Rewriting mutable variables

Before this modification, closures with mutable variables did not work in complex cases
with shared variables, as shown in the code snippet 4.65. Both the increment and decre­
ment functions capture an environment where the mutable variable count is shared be­
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tween them. Both environments point to the struct with the value field and will, therefore,
both operate on the same shared value. This is illustrated in Figure 4.66.

1 type Counters = struct {increment: () -> int; decrement: () -> int};
2
3 // Return a structure with two functions that share a counter.
4 // The 'count' is initialized to 0.
5 // The 'count' can be either incremented or decremented
6 fun makeCounters(): Counters = {
7 let mutable count: int = 0; // The mutable variable 'count'
8
9 // The lambda terms below capture 'count' twice

10 struct { increment = fun () -> { count <- count + 1 };
11 decrement = fun () -> { count <- count - 1 } } : Counters
12 };
13 // create a counter
14 let c1: Counters = makeCounters();
15 assert(c1.increment() = 1);
16 assert(c1.increment() = 2);
17 // create a counter more
18 let c2: Counters = makeCounters();
19 assert(c2.increment() = 1); // Output: 1 (independent of c1)
20 assert(c2.increment() = 2);
21 assert(c2.decrement() = 1);
22 assert(c2.decrement() = 0)

Figure 4.65: Advanced example with closures using mutable variable

cenv0 cenv1

Value: 0

Linear memory

Figure 4.66: Mutable variable shared between closure environments

4.4 Summary
The main focus of this chapter is on the implementation of hyggeWasm. It describes how
code was generated for each feature in the Hygge programming language. Examples
of notable features implemented include composite datatypes, e.g. structs and arrays,
pattern matching, functions, and closures.

Implementation of the Learning and Development tool and the WGF, is also described
in this chapter. The Learning and Development tool has been implemented to load and
execute binary WebAssembly modules with the extended capabilities of the hyggeWasm
runtime. The runtime facilitates I/O and memory allocation by the embedder.

WAT Generation Framework (WGF) has been implemented to represent the WAT module
and can convert the IR to a WAT module.
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5 Bringing garbage collection to
HyggeWasm

This chapter will explore how the WasmGC standard can bring garbage collection (GC)
to HyggeWasm. This was added relatively late in the project period and is here treated
separately from the rest of the implementation. This is not a full implementation of all
features in HyggeWasm, but rather an exploration of how the features of WasmGC can
be adopted by HyggeWasm.

5.1 Memory layout
WasmGC introduces a new way of storing structs and arrays in a store maintained by a
module instance running within the VM[44][61]. When utilizing the heapmemory mode of
HyggeWasm, all dynamically allocated structures, such as structs and arrays, will reside
in the store of the module instance. This is until the Garbage Collector (GC) deems that
the structure can be removed. The static data continues to be stored in linear memory.

Virtual machine

Heap memory 

Dynamic Heap
allocated structures

Module instance

Linear memory 

Static data

Figure 5.1: Memory split in VM

5.2 Introducing heap types
The WasmGC proposal enables garbage collection (GC) through the definition of struct
and array types.

For the GC to reclaim memory chunks, it needs information about the structure of the
elements stored in memory. This includes details about the data type within the structures
and references to other objects residing in memory.

Types are added to the type section alongside function types. They need to be defined
before use. Types can refer to other types as long as they are defined before use within the
module. Thus, the types have the same order as they are defined in the Hygge program.

5.3 New reference instructions
To enable working with new data objects on the heap, a set of new reference instructions
have been added to Wasm. The new instructions facilitate instances, reading and writing
data, and casting types. A list of the instructions used by HyggeWasm can be seen in
table 5.1.
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Instruction Description
struct.new Create a new struct
struct.get Access a field in a struct
struct.set Set a field in a struct
array.new Create a new array
array.set Set a value in an array
array.get Get a value from an array
array.len Retrieve the length of an array
ref.cast Cast a reference
Table 5.1: WasmGC Reference Instructions

5.4 Code generation
This section ensures the report’s overall brevity and maintains focus on essential content.
Hence, not every implemented feature supporting the heap memory mode will be com­
prehensively covered. Instead, it provides examples of the produced code and general
code generation examples.

5.4.1 Arrays

Arrays will be examined by exploring the compiled code of the Hygge program in code
snippet 5.2, compiled with the heap memory mode. The program initializes an array,
retrieves its length, reads a value, modifies an element, and reads it again.

1 let arr: array {int} = array(2 + 2, 40 + 2); // create array
2 let len: int = arrayLength(arr); // get the length
3 let val: int = arrayElem(arr, 1); // get value at index 1
4
5 assert(len = 4); // asset length
6 assert(val = 42); // assert initial value of index 1
7
8 arrayElem(arr, 1) <- 200; // write value to index 1
9

10 let val2: int = arrayElem(arr, 1); // get value at index 1
11
12 assert(val2 = 200) // assert new value of index 1

Figure 5.2: Working with arrays in Hygge

The type section now contains the heap type definitions. The type $arr_i32 defines a
mutable i32 array corresponding to the array created in the Hygge program. Type names
have been designed for reuse. Moreover, the global variable to which the array is assigned
has changed, transforming it from an i32 value to a nullable reference of the type $arr_i32.
The type declarations can be seen in 5.3. Note that the type section needs to be before
the global section for the type reference to work.
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1 (type $arr_i32 (;0;) (array (mut i32))) ;; mutable i32 array type
2 ;; global variable declaration with nullable reference to the type arr_i32
3 ;; is initialized to null
4 (global $var_arr (;2;) (mut (ref null $arr_i32)) (ref.null $arr_i32))

Figure 5.3: Type and global declarations

The code sample 5.4 shows selected parts of the compiled program that have changed
due to the new instructions. The code snippet shows how the instructions related to arrays
are used within the compiled program. Using the new reference instructions reduces the
number of instructions needed. As opposed to the implamentaion in section 4.3.6.14, the
index bounds are automatically checked to ensure they are within bounds when using
heap types. Furthermore, the debugging experience is improved with appropriate error
messages in cases of out­of­bounds access.

1 ;; Create new Array
2 (array.new $arr_i32 ;; create new array
3 (i32.add ;; add (40 + 2) <-- the array is inilized with 42 in all positions
4 (i32.const 40) ;; push 40 on stack
5 (i32.const 2) ;; push 2 on stack
6 )
7 (i32.add ;; add (2 + 2) <-- the size of the array will be 4
8 (i32.const 2) ;; push 2 on stack
9 (i32.const 2) ;; push 2 on stack

10 )
11 )
12
13 ;; Get length of Array
14 (array.len ;; get length of array
15 (global.get $var_arr) ;; get the reference of 'arr'
16 )
17
18 ;; Write value to array
19 (array.set $arr_i32 ;; write 200 to index 1 in array 'arr'
20 (global.get $var_arr) ;; get the reference of 'arr'
21 (i32.const 1) ;; write at index 1
22 (i32.const 200) ;; write the value 200
23 )
24
25 ;; Access array element
26 (array.get $arr_i32 ;; get data from array 'arr' at index 1
27 (global.get $var_arr) ;; get reference of 'arr'
28 (i32.const 1) ;; read at index 1
29 )

Figure 5.4: Use of the array reference instructions

All array operations are implemented in the heapmemory mode, except for the slice func­
tionality.
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5.4.2 Structs
Structs will be examined by exploring the compiled code of the Hygge program in 5.5,
compiled with the Heap memory mode. The program creates a struct with three fields,
modifies one field, and asserts the content of the struct.

1 let s: struct {i: int; a: float; b: int} = struct {i = 42; a = 93.2f; b = 90};
2 s.b <- 100;
3 assert(s.b = 100);
4 assert(s.i = 42);
5 assert(s.a = 93.2f)

Figure 5.5: Use of structs

A heap type matching the struct is placed in the module. See code snippet 5.6. The
struct type name reflects the fields and types of the struct itself. This is because fields are
referenced by name in contrast to the other memory modes where they are referenced by
index. This means the field names must be part of the type identifier to be unique. The
global variable var_s uses the type and initializes the variable to a null reference of the
same type.

1 (type $s|i-i32|a-f32|b-i32 (;0;) (struct
2 (field $i (mut i32))
3 (field $a (mut f32))
4 (field $b (mut i32))))
5
6 (global $var_s (;2;) (mut
7 (ref null $s|i-i32|a-f32|b-i32))
8 (ref.null $s|i-i32|a-f32|b-i32))

Figure 5.6: Type definitions of structs

The code sample 5.4 shows selected parts of the compiled program that use the new
struct reference instructions.
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1 ;; Create struct
2 (struct.new $s|i-i32|a-f32|b-i32
3 (i32.const 42) ;; push 42 on stack
4 (f32.const 93.199997) ;; push 93.199997 on stack
5 (i32.const 90) ;; push 90 on stack
6 )
7 ;; Set value of field 'b'
8 (struct.set $s|i-i32|a-f32|b-i32 $b ;; set field: b
9 (global.get $var_s) ;; get local var: var_s, have been promoted

10 (i32.const 100) ;; push 100 on stack
11 )
12 ;; Get value of field 'b'
13 (struct.get $s|i-i32|a-f32|b-i32 $b ;; get field: b
14 (global.get $var_s) ;; get local var: var_s, have been promoted
15 )

Figure 5.7: Use of the struct reference instructions

5.5 Example of closure
The Hygge program shown in snippet 5.8 compiles correctly with the new heap constructs.
The anonymous inner function of makeCounter captures x and y.

1 fun makeCounter(y: int): () -> int = {
2 let mutable x: int = 2;
3 fun () -> {
4 x <- x * y // x is captured from the surrounding scope
5 }
6 };
7 let c1: () -> int = makeCounter(2);
8 assert(c1() = 4)

Figure 5.8: Closure example

1 (func $fun_makeCounter/anonymous (param $cenv (ref null eq)) (result i32)
2 ;; local variables declaration:
3 (local $clos (ref $clos_fun_makeCounter/anonymous))
4 ;; downcast to the closure env type of 'fun_makeCounter/anonymous '
5 (local.set $clos
6 (ref.cast (ref $clos_fun_makeCounter/anonymous)
7 (local.get 0) ;; get cenv
8 )
9 )

10 ;; local var 'clos' is used to access the closure env from here.
11 )

Figure 5.9: Cast of closure environments

The environments are parsed around to enable the closures as the eq type. The abstract
type, eq, is a subtype of any that encompasses all types, including references. Then,
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before use, it is cast to the appropriate type. This can be seen in code sample 5.9. The
closure type is created when compiling the lambda term.

5.6 Experimenting with the garbage collector
A test was conducted to evaluate whether the structures placed on the heap were correctly
garbage collected. The program shown in code example 5.10 from /tests/codegen/pass/mem­
loop.hyg places a new struct on the heap for each iteration. The structure is only refer­
enced inside the loop body and can be collected right after each iteration. Furthermore,
the contents of the newly allocated struct were checked as expected.

1 let mutable x: int = 0;
2 let stop: int = 100000;
3
4 while (x < stop) do {
5 let s1: struct {f: int; i: int} = struct {f = 42 + x; i = 42};
6 assert(s1.i = 42);
7 assert(s1.f = 42 + x);
8 print(x);
9 x++

10 }

Figure 5.10: Test case for WasmGC heap structures

For garbage collection to work correctly, structures placed on the heap must be collected
to free up memory during runtime. To inspect this, the Google Chrome memory profiling
feature is used. This is part of Chrome’s development tools. The test program 5.10 is
executed with a breakpoint inside the loop body. After five iterations, memory profiling is
used to create a heap snapshot. When expecting the heap snapshot, it can be seen that
only two of the structures created are still in memory, proving that the garbage collector
is working as intended. A screenshot of this can be seen in fig. 5.11.

Figure 5.11: Function pointer with and without closure
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5.7 Limitations of the heap memory mode implementation
Programs compiled in the heap memory mode have some serious issues that have not
been resolved in the implementation. The following conditions will either lead to compiler
time errors or to compiled programs that do not run correctly.

Programs that use subtyping sometimes produce inconsistent identifier labels, resulting
in a faulty program. Structural subtyping does not work since the needed upcasts are not
included in the code generation. This means a program where the type and the actual
struct completely match, running correctly. See code example 5.5 for a program that
runs correctly. In contrast, a program like the one shown in 5.12 will fail since the type
declaration identifier will match f : int and therefore not match f : int, g : bool.

1 let s: struct {f: int} = struct {f = 1 + 2; g = true};
2 assert(s.f = 3)

Figure 5.12: Program using structural subtyping

The discriminated union­type constructor and pattern matching do not work because they
were not implemented to take advantage of WasmGC constructions yet. Array slices have
not been implemented; using array slices will produce programs that either cannot run or
will run incorrectly. The heap support simple closures but will fail in cases where multiple
functions access the same mutable variable due to the missing types.

5.8 Capabilities Overview
Even though the implementation of the heap mode has limitations, the limited part does
provide enough to implement classic algorithms like bubble sort, binary search, merge
sort, and selection sort. Furthermore, closures work in most cases.

Below is a selection of noteworthy test cases showcasing the capabilities of the heap
mode.

• /tests/codegen/pass/bubblesort.hyg

• /tests/codegen/pass/binarySearch.hyg

• /tests/codegen/pass/mergeSort.hyg

• /tests/codegen/pass/selectionSort.hyg

• /tests/codegen/pass/000-lambda-3.hyg

• /tests/codegen/pass/000-lambda-8.hyg

• /tests/codegen/pass/000-lambda-7.hyg

5.9 Summary
This chapter introduces the new memory architecture using the store of the VM. A new
set of heap types is presented to inform the VM of the data structures on the heap. These
structures can then be manipulated with the reference instructions provided byWasmGC.
Then, examples of how the new heap types and instructions are generated to provide
the language features of Hygge. Experiments are conducted to ensure correct garbage
collection operation, and the implementation’s limitations are described.

Design and Implementation of a WebAssembly Compiler Back­End 85



6 Optimizations

This chapter describes how optimization techniques have been utilized to produce more
effective WebAssembly code. The optimizations have been implemented as late­stage
optimizations, known as peephole optimizations[1, p. 349]. Each optimization targets a
specific pattern of instructions that can be substituted or removed. These optimizations
may run multiple parses over the instructions and will continue until a stable output is
reached.

6.1 Optimizing the reading and writing of local variables
A prevalent practice in handling local variables involves writing to local variables, followed
promptly by their subsequent retrieval. This is because local variables often are used as
virtual registers, acting as simple temporary variables. When generating code, in the initial
phase, the ordering of the instructions cannot always be anticipated due to an absent
context. This can lead to the local.set and local.get being used adjacently to each other.
This is a common pattern. Thus, WebAssembly has included the local.tee instruction to
optimize this pattern. The local.tee instruction is equivalent to a local.set followed by a
local.get.

To take advantage of this, the optimization algorithm searches for the pattern of two ad­
jacent local.set and local.get with the same label. When found, the two instructions are
substituted with a single local.tee. This code that implements this optimization can be
seen in code snippet 6.1.

1 | (LocalSet(l1, instrs), c1) :: (LocalGet(l2), c2) :: rest when l1 = l2 ->
2 (LocalTee(l1, instrs), c1 + c2) :: optimizeInstr rest

Figure 6.1: Substituting set and get for a tee

6.2 Dead-code Elimination
Dead­code elimination strives to remove code that does not influence the program’s result.
The tree structure that the WAT instructions form is traversed, searching for a drop­node.
An example of this tree structure’s appearance can be seen in code snippet 6.2. The goal
of this optimization is to prune the branches that have a drop node as its root.

A drop­node represents the WebAssembly instruction drop and encapsulates the instruc­
tions that push an unused value to the operand stack. The drop instructions are inserted
during the initial code generation process to accommodate WebAssembly’s validation
rules as described in section 4.3.5.
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I32Add

I32Add DropI32Const 4

I32Const 2 I32Const 2

Figure 6.2: Drop subtree

Before pruning the branch with the drop­node as the root, we have to ensure that no
instructions that can cause side effects are present in the sub­tree. All instructions that
write to variables or memory are considered to cause side effects[7][p. 247]. If the sub­
tree is found to include at least one side effect, the tree is not altered.

1 (drop
2 local.tee $var
3 )

Figure 6.3: Example of a sub­tree with a side effect

One example of a code segment that would cause this problem can be seen in 6.3. In
this case, it is the local.tee instruction that writes to a variable. This variable is defined
outside the sub­tree and may be used elsewhere. Therefore, the sub­tree cannot be
pruned without altering the program’s intended execution.

6.3 Special case for dead-code elimination
The specific scenario shown in code snippet 6.3 has its own optimization. The code
pattern of a drop with a local.tee as the last instruction inside that drop can be rewritten
to a local.set without the drop, thus bringing down the instruction count.

1 fun f1(x: int): int = x--

Figure 6.4: Hygge code that can be optimized

A concrete example is theHygge code snippet in 6.4. Compiling this without optimizations
will produce the output seen in code snippet 6.5a. Correspondingly, the code snippet in
6.5b is the compiled output with this optimization applied.
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1 (func $fun_f1 (param $cenv i32) (
param $arg_x$1 i32) (result i32
)

2 (local.get $arg_x$1)
3 (drop
4 (local.tee $arg_x$1
5 (i32.sub
6 (local.get $arg_x$1)
7 (i32.const 1)
8 )
9 )

10 )
11 )

(a) Before optimisation

1 (func $fun_f1 (param $cenv i32) (
param $arg_x$1 i32) (result i32
)

2 (local.get $arg_x$1)
3 (local.set $arg_x$1
4 (i32.sub
5 (local.get $arg_x$1)
6 (i32.const 1)
7 )
8 )
9 )

(b) After optimisation

Figure 6.5: Before and after optimization

6.4 Constant folding
Constant folding involves identifying and evaluating constant expressions during the com­
pilation stage instead of their computation at runtime. Constant folding has been imple­
mented on integer and floating point arithmetic operations and relational operations. In
code example 6.6, the case that handles folding of the i32.add instruction is seen. Note
that every arithmetic and relational operation has a similar case.

This case matches when a i32.add instruction that contains two constants as its argu­
ments are present. The function isConstConst only returns true if and only if two i32.const
or two f32.const are present in instrs. Since i32.add is an integer instruction, it can safely
be assumed to hold integers.

1 | (I32Add(instrs), c1) :: rest when isConstConst instrs ->
2 let (v1, v2) = (getI32ConstConst instrs)
3 (I32Const(v1 + v2), c1) :: optimizeInstr rest

Figure 6.6: Constant folding of i32.add node with two constants

The function getI32ConstConst retrieves the two integer values of the two i32.const in­
structions. The i32.add instruction is substituted with a single i32.const that holds the
sum of the two values. Thereby, the optimizer calculates the result statically so it does
not have to be done during the runtime of the program.

Considering the example 6.7, compiling this code without optimizations yields the output
shown in 6.8.

1 assert(4 + 5 + 3 = 12)

Figure 6.7: Hygge program to be optimized
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In line 7 of code snippet 6.8 is an i32.add instruction that contains two constant values,
which is the exact case this optimization targets. Applying the rule once yields the result of
i32.const 9. This means that the outer i32.add starting on line 8 contains two constants,
and the rule can be applied again. As with any peephole optimization, they are applied
until a stable output is reached, meaning that the optimizations can be applied multiple
times to reduce the needed instructions.

1 (func $_start (;0;)
2 ;; execution start here:
3 (if
4 (i32.eqz ;; invert assertion
5 (i32.eq ;; equality check
6 (i32.add
7 (i32.add ;; <-- become 'i32.const 9'
8 (i32.const 4) ;; push 4 on stack
9 (i32.const 5) ;; push 5 on stack

10 )
11 (i32.const 3) ;; push 3 on stack
12 )
13 (i32.const 12) ;; push 12 on stack
14 )
15 )
16 (then
17 (global.set $exit_code ;; set exit code
18 (i32.const 42) ;; error exit code push to stack
19 )
20 (unreachable) ;; exit program
21 )
22 )
23 ;; if execution reaches here, the program is successful
24 )

Figure 6.8: Before constant fold

In this case, the constant folding of the instructions i32.add, i32.eq, and i32.eqz can be
used to reduce the expressions to a constant value. The result of the of these reductions
can be seen in 6.9.

1 (func $_start (;0;)
2 ;; execution start here:
3 (if
4 (i32.const 0) ;; condition
5 (then
6 (global.set $exit_code ;; set exit code
7 (i32.const 42) ;; error exit code push to stack
8 )
9 (unreachable) ;; exit program

10 )
11 )
12 ;; if execution reaches here, the program is successful
13 )

Figure 6.9: After constant fold
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6.5 Branch-level tree shaking
The code shown in 6.9 can be reduced even further since the condition of the if instruction
is now a constant value. This means that we can statically determine, whether the if or
the else block will be executed. In this case, there is no else block, and the condition is
a false value; therefore, the entire if instruction can be removed, resulting in an empty
module. The programming language AssemblyScript employs a comparable technique,
denoted as Branch­level tree shaking[62].

6.6 Summary
This chapter describes how optimization techniques can be utilized to make the generated
code more effective, four techniques are laid out; namely local variable read­and­write op­
timization, dead­code elimination, constant folding, and branch­level tree shaking, show­
ing examples of how they affect the code and reduce the instruction count.
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7 Evaluation
This section assesses the generated code, the impact of the optimization phase, assem­
bler support, and the testing site of the compiler.

7.1 Internal vs external memory mode
As described in Section 3.3.4, programs compiled with the Internal memory mode include
more logic, producing larger modules. This section will try to quantify the size difference.

Consider the test program from the test suite 000­lambda­10­shadow.hyg. When com­
piling the program with the folded writing style and the memory mode external, the WAT
file consists of 403 lines. When we then only change the memory mode to internal, the
file consists of 634 lines instead, an increase of 57.32%. When both compilations are
performed in the linear writing style, this percentage becomes 50%.

The difference in the size of the WebAssembly modules will depend on the language
features used. Due to this variability, no further effort has been made to investigate it.
However, it can be inferred that the program’s extensive utilization of dynamically allocated
data structures will result in considerably larger WebAssembly modules.

7.2 Assembler Support
Three different assemblers have been tested on the code produced by HyggeWasm.

In the memory modes internal and external, theWat2Wasm[43] and wasm­tools[63] tools
can produce valid functional binary modules for all test programs provided by the project,
and do so in both writing styles.

Wat2Wasm does not support WasmGC constructs at the time of writing and can, there­
fore, not be used for this mode. In this case, wasm­tools should be used.

wasm­as[18] can assemble 64 of the 186 programs corresponding to 34.41% of the test
suite. Only the folded writing style can be processed by wasm­as.

7.3 Testing
The section presents a comprehensive analysis of the testing procedures conducted for
this thesis. The test suite consists of 482 test programs with varying complexity. The
majority of test programs test very specific scenarios related to a feature.

All tests are in the /tests folder. Tests are separated into folders based on the phase that
they are meant to test. The folders are:

• codegen

• lexer

• parser

• typechecker

Please note that the tests for the lexer, parser, and type checker are untouched and only
included for completeness.
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The original test suite for HyggeC, the Hygge compiler that produced RISC­V assembly
consisted of 350 test programs, where some of the tests were supplied at the start of
the Compiler Construction course, and others were added as part of the assignments
throughout the course. Most tests have been reused and are part of the new test suite of
491 test programs.

The tests that this project is primarily concerned with are the test programs that target
code generation. There are 212 test programs in this category, found in the folder /test­
s/codegen. The rest of this section will only deal with tests for code generation. To give
an impression of the size and scope of the code generation tests, see figure 7.1, which
shows a histogram of the number of instructions in the compiled test programs in incre­
ments of 50. It can be observed that most tests in the test suite are fairly small, with under
100 instructions.

Figure 7.1: Histogram of instructions count

To ensure that all the different modes work correctly, all tests targeting the code generation
are run in multiple configurations; this includes memory modes, internal and external as
well as writing style, folded and linear. All test programs are conducted with and without
peephole optimizations applied to ensure that the program execution is not altered. All
the configurations mean that when the entire test suite is executed, 1.203 distinct tests
are evaluated to ensure correct operation. Code generation tests constitute 1040 of these
tests. The heap mode is not part of these tests and has been tested manually through
the Learning and Development tool.

7.4 Optimizations
This section will assess the peephole optimizations that have been incorporated. The
methodology for evaluating these optimizations involves quantifying the number of in­
structions within each function in the module. This quantification is conducted before the
peephole optimizations are applied and after their application, allowing for a comparative
analysis of the two.

All data is collected into one set in appendix H. A sample of the data is shown in 7.1. The
data consists of the file name of the test program, the instruction count before and after
optimizations are applied, the difference between the two, and a reduction in percentage.
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name of file instr count instr count after op diff % reduction
000­negate­float 16 0 16 100.00
hygge­union­structs 210 206 4 1.90
hygge­union 105 104 1 0.95
if­return 774 468 306 39.53
insertionSort 936 732 204 21.79
letClousure 244 237 7 2.87
linearSearch 536 423 113 21.08
memory­grow 142 142 0 0.00
memory­static 3 3 0 0.00
mergeSort 1458 1247 211 14.47
multiplier 82 68 14 17.07
quickSort 1094 889 205 18.74
selectionSort 977 770 207 21.19

Table 7.1: Exsample of optimization data set

The analysis has been done in Python and can be found in the file DataAnalysis/note­
book.ipynb.

7.4.1 The impact of optimization
The mean of the percentage reduction of the instruction count for the test suit is 14.62%.
109 of the test programs have no reduction. 18 test programs have a 100% reduction.

Figure 7.2: Difference in instructions count vs. Total instruction count

Figure 7.2 illustrates a somewhat noticeable trend indicating a linear relationship between
the module size and the corresponding reduction in the number of instructions.

When applied separately, the dead­code elimination reduces the instruction count mean
by 2.32%.

When applying only the constant folding technique, the mean of the reduction is 12.36%.
This means constant folding is the most effective technique used. If this is applied without
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the branch­level tree shaking, the mean drops to 5.06%.

When applied separately from the other techniques, the local read­and­write optimization
results in a mean reduction of only 0.05%. Thus, the least effective optimization that has
been implemented.

The mean of 14.62% reduction in instruction count across all tests, when every optimiza­
tion is applied is a satisfying result and shows that the techniques used can be successfully
applied to WebAssembly.

7.5 Summary
This chapter starts by evaluating the impact of internal and external memory modes in
terms of program size. Then, the support of assemblers was evaluated, concluding that
Wat2Wasm and wasm­tools work on the entire test suite. Then, the test suite itself is
and its scope evaluated. This leads to using the test suite to evaluate the impact of the
optimizations described in chapter 6.
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8 Future work
This chapter will address missing features, general improvements, and additional opti­
mizations of the compiler.

Improve dead code elimination The current implementation of dead code elimination,
as described in Section 6.2, does not account for the fact that temporary variables may
only be needed in the sub­tree that is removed, leaving their declarations behind in either
the local section of a function or the global section of the module. Therefore, it would be
natural to extend this function to check if a variable is used elsewhere; otherwise, remove
the declaration, thereby producing a cleaner module.

Allow programs to have zero memory All modules produced by HyggeWasm have at
least one page of memory available as described in Section 3.3.4.2. For programs that do
not have static or dynamic data, this is unnecessary and should be avoided. A solution
could be to check if static memory is utilized and then examine whether any memory
instructions are used within the module to ensure no dynamic allocation is needed. If
none are found, then it is acceptable to set the memory to zero pages.

Reintroduce exported functions Before closures were introduced into Hygge, the fea­
ture of the exporting functions with the export keyword was implemented. To allow this to
work correctly with closures a calling convention has to be established.

Full support for WasmGC A natural extension of the project would be to continue the
implementation of Heap memory mode that relies on theWasmGC constructs. The Limi­
tations of the current implementation are described in Section 5.7.

Explicitly defined main function Add the possibility for the Hygge programmer to de­
fine an explicit entry point as described in Section 3.3.7. This would also mean that no
code can exist outside a function, in the global scope.

Enhance support of wasm­as assembler Several things can be done to enhance the
support of the wasm­as. Most of the errors encountered when passing the WebAssembly
programs produced by HyggeWasm were related to not following the strict structure of the
tree that wasm­as enforces. This means that an instruction like i32.add must only have
two child nodes and can not have a three node even though it does not amount to a value.

One way to do this is to change the IR to enforce this structure. Code sample 8.1 shows
how this could be done.

1 | I32Add of Wasm Commented list ;; current implementation
2 | I32Add of Wasm Commented * Wasm Commented ;; new implamentation

Figure 8.1: Enforce structure in IR
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Another change will be that it seems like wasm­as expect result type declarations in some
places that do not match what wat2wasm do. Therefore there will have to be added a new
compile flag that speedily added when in ”wasm­as­mode.”

Combine memory allocator into one WebAssembly module to run the same code in
all environments At the moment, the memory allocator is implemented in both Type­
Script and C#, leaning to less maintainable code. A better way would be to compile the
memory allocator to WebAssembly and run that one version.

Provide better debugging experience One way to provide a better debug experience
would be to produce Source maps as part of the compilation process to map between
the original Hygge program and the produced WebAssembly code. This would require
producing the binary format instead of WAT.

Tail recursion optimization Even though aHygge function is written to be tail­recursive,
the generated WebAssembly code does not discard the caller frames. This can lead
to a call stack overflow when doing heavy recursion. To mitigate this problem, the tail
call extension[64] of WebAssembly can be used. For this to work in HyggeWasm, there
needs to be a way to recognize when a function is tail­recursive and then substitute the
call_indirect instruction for the return_call_indirect instruction.
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9 Conclusion
The main purpose of the thesis has been to design and implement a WebAssembly com­
piler back­end for the existing programming language Hygge.

WebAssembly was thoroughly reviewed to understand how the ISA could translate to the
high­level features of Hygge. Furthermore, the method used to compile each feature was
assessed for reliability and validity by reviewing other compilers and literature.

The Hygge high­level features outlined in appendix A.1 have been successfully imple­
mented. Extensive testing has been carried out to validate and ensure correct operation,
thus fulfilling the problem P1 in the Problem statement.

While HyggeWasm cannot be compared with mature languages like Rust, it does bring
non­trivial features like closures. A feature that not even an established WebAssem­
bly language like AssemblyScript does support[65] at the time of writing. Furthermore,
HyggeWasm incorporates the new features ofWasmGC that are at the absolute forefront
of the WebAssembly features. It is one of the few languages using these new features at
the moment.

This thesis explores different solutions to design problems, including memory modes,
system interfaces, and writing styles of the textual format, showcasing a wide range of
problem­solving approaches. Thereby fulfilling P2 in the Problem statement.

As the project progressed, it became clear that additional utilities were needed. The
Learning and Development tool was necessary to ensure easy execution and debugging
of the WebAssembly programs. In addition, the HyggeWasm runtime was implemented
in both C# and TypeScript. This allows the produced WebAssembly modules to easily
interact with I/O and entrust memory allocation to the host system.

The memory modes allow Hygge to manage and allocate memory with three distinct tech­
niques. The Hygge system interface (HyggeSI) brings a simplified interface that nicely in­
tegrates with the Learning and Development tool. WASI can be used to produce universal
binaries with limited capability.

The WebAssembly code was also optimized using various techniques to improve the
resulting programs. Moreover, the optimizations were evaluated to form a consensus
on their effectiveness to fulfill P3 in the Problem statement.

Incorporating a new IR into the project required significant effort. However, this step was
instrumental in facilitating the comments for WAT programs and offered the much­needed
flexibility to exploit newWasmGC instructions.

For the reason described in this section, it can be concluded that the project has been
successful in designing and implementing the new compiler back­end. Onemay, however,
consider further development of HyggeWasm, on the basis of thoughts found in Chapter
8.
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10 Acronyms
DTU Technical University of Denmark

OS Operating System

WASI The WebAssembly System Interface

VM Virtual Machine

WAT WebAssembly Text Format

I/O Input/Output

IR Intermediate Representation

ISA Instruction Set Architecture

LIFO Last In First Out

JVM Java Virtual Machine

WORA Write once, run anywhere

MoSCoW Must Have, Should Have, Could Have, Won’t Have this time

MVP Minimum Viable Product

CFG Context­Free Grammar

AST Abstract Syntax Tree

SIMD single instruction multiple data

POSIX Portable Operating System Interface

PC Program Counter

CLI Command­Line Interface

ABI Application Binary Interface

ASCII American Standard Code for Information Interchange

DWARF Debugging With Attributed Record Formats

JIT just­in­time

AOT ahead­of­time

API Application Programming Interface

npm Node Package Manager

PC Program Counter

GUI Graphical User Interface

TUI Text­based User Interfaces

UI User Interfaces

IDE Integrated Development Environment
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WGF WAT Generation Freamework

GC Garbage Collector

TDD Test­Driven Development
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A Requirements specifications
This specification lists all requirements of HyggeWasm and The learning/development
tools whereHyggeWasm is the version of Hygge that can be compiled into WebAssembly.

An initial specification for both specifications was created at the start of the project. During
the project, the specifications were modified but largely remained the same.

A.1 Code generation and Language features - Requirements
This specification lists all language features that should be part of HyggeWasm in the
Must Have, Should Have, Could Have, Won’t Have this time (MoSCoW) format.

Must have

1. The generated code must be a valid WAT module.

2. The developer must be able to add a comment to every instruction.

3. The generated code must be formatted in a reasonable and readable way.

4. The generated codemust have only one entry point of execution (Onemain function)
that will be implicit and therefore invisible for the Hygge programmer.

5. The backend must be able to produce functional WAT pertaining to the subsequent
language features and operators:

(a) Arithmetic operators

i. Subtraction

ii. Addition

iii. Remainer division (Modulo)

iv. Division

v. Square root

vi. Maximum and minimum between two numbers

(b) Relational operators

i. Equality

ii. Less than

iii. Less than or equal

iv. Greater then

v. Greater than or equal

(c) Variables

i. Immutable Variables

ii. Mutable Variables

iii. Pre­ and post­increment and decrement operators (++ var, var −−)
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iv. Addition assignment (var1+ = 1)

v. Subtraction assignment (var2− = 1)

vi. Multiplication assignment (var1∗ = 1)

vii. Division assignment (var1/ = 1)

viii. Remainer division assignment (var1% = 1)

(d) Logical operators

i. Exclusive or (Xor)

ii. Or

iii. And

iv. Short­circuiting:

A. And (&&)

B. Or (||)

(e) Control flow

i. Conditional statements (if­then­else)

ii. While­loops

iii. For­Loops

iv. Do­while­loops

(f) Data structures and operations

i. Structs ­ Constructor, Access field. Assign field value.

ii. Tuples ­ Constructor, Access field. Assign field value.

iii. Arrays ­ Constructor, Access element, Assign element value, Slice Array.

(g) Functions

i. Functions as first­class citizens

ii. Recursive functions declarations

iii. Recursive functions calls

(h) Data types

i. Integer values

ii. Floating­point values

iii. Strings

A. String length ­ Can obtain the length of a string with a pointer to the
string data.

(i) I/O

i. Read integer or float values into module.

ii. Write integer, float, and string values value to output stream
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(j) Test specific features
This feature is primarily included to enable easy tests of the hygge test pro­
grams.

i. Assert operator that will end the program or continue execution based on
a boolean expression.

Should have

6. The developer should be able to add line comments without a companion instruction.

7. The backend should be able to produce functional WAT pertaining to the subsequent
language features and operators:

(a) Typing and Pattern matching

i. Discriminated Union Types

ii. Pattern matching

(b) Closures

Could have

8. The compiler could use optimization techniques such as peephole optimization.

9. The generated code could generate code in both a flat and nested (Folded) writing
style based on input arguments.

10. The hygge language could be extended to let the hygge programmer explicitly add
exports of functions.

Won’t have (this time)

11. Be able to throw and handle exceptions

12. Have explicit main function declaration
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A.2 Developer and learning tools - Requirements
This specification lists all requirements of the development and learning tool application
that will aid the exploration, debugging, and execution of HyggeWasm programs.

Must have

1. The tool must be able to show the compiled code WAT.

2. The tool must be able to run the WAT code.

3. The tool must be able to display the output of the WAT programs.

4. The tool should be able to accept inputs for the WAT programs to use.

5. The tool must be able to run on both Windows and MacOS.

6. The tool must have eave the same host interface used for testing the compiler.

Should have

7. The tool should be able to place breakpoints in the code.

8. The tool should be able to step through every code instruction.

9. The tool should be able to display the linear memory.

Could have

10. The tool could display the Hygge programs corresponding AST.

11. The tool should be able to display both original and unpacked1 WAT programs.

Won’t have (this time)

12. Be able to show comments in the debugging tool

13. Store debug information in the .wasm files that map to the .wat program.

14. Store debug information in the .wasm files that map to the .hyg program.

15. Syntax high­lighting of hygge code.

1Unpacked form of the code is wherever optional folded instructions have been written in the linear style.
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B User interface - Early wireframe

Concept drawings in the form of wireframes.

Compile

Hygge code WAT code

Console output and input.

Run

Figure B.1: Wireframe

Chrome dev tools

Run

Load .wasm program

Figure B.2: Wireframe with dev­tools
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Chrome dev tools

RunLoad hygge program Compile

Hygge program

Original .wat program with comments

Figure B.3: Wireframe with dev­tools and hygge functionality
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C User interface

Figure C.1: UI after Sprint 2
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D Manual for learning and development
tool

This document contains a user guide for using the learning and development tool.

D.1 Software Version Requirements
First, make sure that your browser is updated. The tool works with:

• Google Chrome: Version 119 or later

• Mozilla Firefox: Version 120 or later

The tool may work perfectly with other browsers, but this has not been tested. Further­
more, it is required to use Google Chrome since this is the best­tested browser for this
app.

D.2 Run the learning and development tool locally
To run the web application locally, go to the solution’s root folder, wasm­debugger. Then,
run the commands shown in D.1. This installs all dependencies of the project and runs
the application. The web application will, by default, be served on port 3000.

1 npm i
2 npm run start

Figure D.1: Run the web application

D.3 Use the learning and development tool
If you have successfully started the web application, open your browser and go to
http://localhost:3000/. This should give you a view similar to D.2.

Figure D.2: Initial state of tool

Our test program will use the Hygge program in D.3.
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This application uses a development tool built into the browser. Therefore, to get the
full experience, open the development tool by pressing Ctrl + Shift + J on a Program
Counter (PC) or Cmd + Opt +J on a Mac. This should look like D.4.

Figure D.4: Dev tool opened

Then, the program can be loaded by clicking the Select file button. This will open a dialog
where you can select one binary WebAssembly module file (.wasm). This is shown in
D.5.

Figure D.5: Open file

Then, the button Run can be clicked to start the program’s execution. Since the program
reads a user input with readInt(), will the execution be held and wait for input by showing
an alert dialog with an input text field. In this case, asking for an integer value; for this
example, we input 10. See D.6.
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1 let mutable x: int = readInt(); // read input
2 println("--------------------------");
3
4 let arr: array {int} = array(x, 0); // array constructor
5
6 fun f(arr: array {int}, i: int): array {int} = { // recursive function
7 if (i < arrayLength(arr)) then { // read length of array as part of

condition
8 arrayElem(arr, i) <- i + 1; // assign value to array element
9 f(arr, i + 1) // recursive function call

10 }
11 else {
12 arr // return modified array
13 }
14 };
15
16 f(arr, x / 2); // modified array returned
17
18 x <- 0; // reset x
19
20 do { // do-while to print array data
21 println(arrayElem(arr, x)); // read array element
22 x <- x + 1 // increment
23 } while (x < arrayLength(arr)); // read length of array as part of condition
24
25 println("--------------------------");
26
27 let sliced: array {int} = arraySlice(arr, x / 2, arrayLength(arr)); // slice

array in half
28
29 x <- 0;
30
31 do { // do-while to print array data
32 println(arrayElem(sliced, x)); // read array element
33 x <- x + 1 // increment
34 } while (x < arrayLength(sliced)); // read length of array as part of

condition
35
36 println("--------------------------");
37
38 type OptionalArray = union { // read length of array as part of condition
39 Some: array {int};
40 None: unit
41 };
42
43 let o: OptionalArray = Some{sliced}; // union constructor
44
45 match o with { // match pattern of 'o'
46 Some{v} -> println(arrayLength(v));
47 None{_} -> println("None")
48 }

Figure D.3: Working with Arrays in Hygge
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Figure D.6: Integer input

After submitting the value, the execution will continue. The output of the program will be
shown in the browser console.

Figure D.7: Output in console

If the verbose logging toggle is on, allocation information will be shown in the program
compiled in the External memory mode. The output can be seen in D.8.
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Figure D.8: Vabose output in console

D.4 Debug program

First, load a program and open the development tool, as shown in the previous section.

To place break points in the WebAssebly code that has been loaded, do as follows (use
figure D.9 as reference):

1. Click sources at the top of the development tool panel.

2. Ensure you can see the page’s resources by clicking page.

3. Find the file you just loaded and click it. Unfortunately, Chrome renames the file for
security reasons; look for the file that has the ”_start” function.

4. Click on the line number you want to place a breakpoint on.

5. Click run. When the breakpoint is reached, the execution stops, and instructions
can be stepped through.

6. Click the memory symbol to inspect the linear memory.
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Figure D.9: Debug and inspect linear memory
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E Manual for using the CLI
Guide for running and compiling WebAssembly in the CLI

E.1 Run '.wat'-file
The CLI lets the user run the ’.wat’­file withWasmtime and the HyggeWasm runtime.

./hyggec wasm test.wat

E.2 Run test suite
The CLI lets the user run the test suite.

./hyggec test

E.3 Compile Hygge program
The CLI lets the user compile a Hygge program to a WAT module. The options are in
Table E.1.

./hyggec <path to hygge program> -s l -o <path to wat output file> -e -i 0 -m 1

Flag Description Input’s
_ Input path to hygge program
­s Writring style linar (”l”) or folded (”f”)
­o Output file Path to wat output file
­i System interface 0 ­ HyggeSI or 1 ­ WASI
­m Memory mode 0 ­ External or 1 ­ Internal or 2 ­ Heap (WasmGC)
­e Execute after compilation _

Figure E.1: Compile options
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F UTF-16 Strings

In an earlier version of the implementation, strings were interpreted as theUnicode UTF-16
format. This had some disadvantages:

• Advantages:

– The length does not have to be explicitly stored because it can be computed.

• Disadvantages:

– Cannot represent the entire Unicode character set.

– Each character uses more bytes when using common symbols found in ASCII.

– The console output would not print the entire string when symbols that used
more bits were used; see figure F.3.

This led to the abandonment of UTF­16 to instead use UTF­8, which can represent the
entire Unicode character set and use less space for commonly used symbols commonly
found in ASCII.

The implementation was very similar. When the module has been instantiated, the data
will be placed in memory as a structure containing the pair (d, s), where d is the address
of the string and s is the size of the string in bytes. How the pair (d, s) is stored in memory
is shown in figure F.1. The arrow pointing to the data address field is the pointer left on
the stack when evaluating the StringVal node.

Dynamic data

"This is the actual
string data"

Data addr Size in bytes

Memory

Figure F.1: Strings in memory

As part of its development tools, Google Chrome has a memory inspector that can show
how this is stored in the ArrayBuffer, see figure F.2.
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(a) UTF­16 (b) UTF­8

Figure F.3: Comparing the use of UTF­8 to UTF­16

1 | StringLength e ->
2 let m' = doCodegen env e m
3
4 let instrs =
5 m'.GetAccCode()
6 @ [ (I32Load_(None, Some(4)), "load string length")
7 // divide by 2 to get the number of characters
8 (I32Const 1, "push 1 on stack") // or i32.const 2
9 (I32ShrS, "divide by 2") ] // or i32.div_s

10
11 m'.ResetAccCode().AddCode(instrs)

Figure F.4: Evaluating StringLength node

Figure F.2: String in Arraybuffer show in Chrome dev­tools

One advantage of using UTF­16 is that the string length can be computed from the number
of bytes because UTF­16 is a fixed­size format, where each character occupies a constant
number of bytes. This means the Number of bytes/2 = String length. Therefore, there
was no need to store the length in an additional field as long as only ASCII characters
were used.

The intrinsic operation stringLength(s) was implemented as shown in code example
F.4.
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G Hygge System interface specification
The specification defines the Hygge system interface, HyggeSI. The function described
in the spec can be imported by a wasm module while running in a HyggeSI­compatible
environment, meaning an environment that implements the Hygge runtime. This is similar
to ABI used by other compiler toolchains[28].

G.1 Interface
• malloc:

– Module: ”env”

– Function: ”malloc”

– Type: (int)→ int

– Description: Used to allocate linear memory block

• readInt:

– Module: ”env”

– Function: ”readInt”

– Type: ()→ int

– Description: Reads an integer from input

• readFloat:

– Module: ”env”

– Function: ”readFloat”

– Type: ()→ float

– Description: Reads a floating­point number from input

• writeInt:

– Module: ”env”

– Function: ”writeInt”

– Type: (int)→ ()

– Description: Writes an integer to output

• writeFloat:

– Module: ”env”

– Function: ”writeFloat”

– Type: (float)→ ()

– Description: Writes a floating­point number to output

• writeS:

– Module: ”env”
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– Function: ”writeS”

– Type: (int, int, int)→ ()

– Description: Writes a string value from linear memory to output. The first argu­
ment is an address to the first character in memory. The second is the length
in bytes.

The last value indicates if a new line character should be inserted as the last
character in the sequence. If this value is v > 0 a new line is inserted otherwise
not.
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H Optimisation data set
The optimization data set is in the file stats.csv. The file includes data about the number
of instructions in the regular WebAssembly module and the optimized one, the difference
in instruction count between the two, and a calculated percentage reduction. An example
of the data can be seen in table H.1.

name of file instr count instr count after op diff % reduction
000­negate­float 16 0 16 100.00
hygge­union­structs 210 206 4 1.90
hygge­union 105 104 1 0.95
if­return 774 468 306 39.53
insertionSort 936 732 204 21.79
letClousure 244 237 7 2.87
linearSearch 536 423 113 21.08
memory­grow 142 142 0 0.00
memory­static 3 3 0 0.00
mergeSort 1458 1247 211 14.47
multiplier 82 68 14 17.07
quickSort 1094 889 205 18.74
selectionSort 977 770 207 21.19

Table H.1: Exsample of optimization data
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I Visual studio code configurations
Tasks

1 {
2 // See https://go.microsoft.com/fwlink/?LinkId=733558
3 // for the documentation about the tasks.json format
4 "version": "2.0.0",
5 "tasks": [
6 {
7 "label": "build",
8 "command": "dotnet build",
9 "type": "shell",
10 "group": "build",
11 "presentation": {
12 "reveal": "silent"
13 },
14 "problemMatcher": "$msCompile"
15 },
16 {
17 "label": "towasm",
18 "command": "wat2wasm", // Could be any other shell

command
19 "args": [
20 "--debug -names", // keep names from wat file
21 "test.wat",
22 "-o",
23 "test.wasm"
24 ],
25 "presentation": {
26 "reveal": "silent"
27 },
28 "type": "shell"
29 },
30 {
31 "label": "wasm-tools",
32 "command": "wasm-tools", // Could be any other shell

command
33 "args": [ // wasm-tools parse struct_working.wat -o

struct_working.wasm
34 "parse",
35 "test.wat",
36 "-o",
37 "test.wasm",
38 ],
39 "presentation": {
40 "reveal": "silent"
41 },
42 "type": "shell"
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43 },
44 {
45 "label": "wasmas",
46 "command": "wasm-as", // Could be any other shell

command
47 "args": [
48 "--debuginfo", // keep names from wat file
49 "--debug",
50 "--enable -gc",
51 "--enable -reference -types",
52 "test.wat",
53 "-o",
54 "test.wasm"
55 ],
56 "presentation": {
57 "reveal": "silent"
58 },
59 "type": "shell"
60 },
61 {
62 "label": "run",
63 "command": "./hyggec", // Could be any other shell

command
64 "args": [
65 "wasm", // keep names from wat file
66 "test.wat"
67 ],
68 "presentation": {
69 "reveal": "always"
70 },
71 "type": "shell"
72 }
73 ]
74 }

Launch configurations - launch.json
1 {
2 "version": "0.2.0",
3 "configurations": [
4 {
5 "name": "Compile hygge program and produce test.wasm

file",
6 "type": "coreclr",
7 "request": "launch",
8 "preLaunchTask": "build",
9 "postDebugTask": "wasm-tools", // towasm or wasmas

or wasm-tools
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10 "program": "${workspaceFolder}/bin/Debug/net8.0/
hyggeWasm.dll",

11 "args": [
12 "${workspaceFolder}/examples/hygge/exam.hyg",
13 "--style",
14 "f", // folded (f) or linear (l)
15 "-o",
16 "test.wat",
17 // "--optimize", "4", // produce WAT with

optimizations
18 "-e", // execute file with wasmtime
19 "-i", "0", // 0 - hygge, 1 - wasi
20 "-m", "0" // 0 - external, 1 - internal, 2 -

heap (WasmGC)
21 ],
22 "cwd": "${workspaceFolder}",
23 "stopAtEntry": false,
24 "console": "internalConsole"
25 },
26 {
27 "name": "Run tests",
28 "type": "coreclr",
29 "request": "launch",
30 "preLaunchTask": "build",
31 "program": "${workspaceFolder}/bin/Debug/net8.0/

hyggeWasm.dll",
32 "args": [
33 "test",
34 // "-f",
35 // "wasm"
36 ],
37 "cwd": "${workspaceFolder}",
38 "stopAtEntry": false,
39 "console": "internalConsole"
40 }
41 ]
42 }
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J Module API

Methods
1 member this.GetHostingList() : list<string>
2
3 member this.AddToHostingList(name: string) : Module
4
5 member this.GetAllFuncs() : list<string * Commented <FunctionInstance >>
6
7 member this.ReplaceFuncs(list: list<(string * FunctionInstance) * string >) :

Module
8
9 member this.RemoveLocal(name: string) : Module

10
11 member this.IsFunction(name: string) : bool
12
13 member this.LookupFuncInFuncTable(name: string) : option<int *

FunctionInstance * string>
14
15 member this.AddFuncRefElement(label: string, index: int) : Module
16
17 member this.AddCode(instrs: Instr.Wasm list) : Module
18
19 member this.AddCode(instrs: Commented <Instr.Wasm> list) : Module
20
21 member this.GetTypes() : List<TypeDef>
22
23 member this.GetAccCode() : list<Commented <Wasm>>
24
25 member this.ResetAccCode() : Module
26
27 member this.ResetLocals() : Module
28
29 member this.AddLocals(locals: list<Local>) : Module
30
31 member this.GetLocals() : Module
32
33 member this.AddLocals(name: string, locals: list<Local>) : Module
34
35 member this.AddInstrs(name: string, instrs: Instr.Wasm list) : Module
36
37 member this.AddInstrs(name: string, instrs: Commented <Instr.Wasm> list) :

Module
38
39 member this.AddImport(i: Import) : Module
40
41 member this.AddTypedef(typedef: TypeDef) : Module
42
43 member this.AddFunction(name: string, f: Commented <FunctionInstance >) : Module
44
45 member this.AddFunction(name: string, f: Commented <FunctionInstance >,

addTypedef: bool) : Module
46
47 member this.AddTable(t: Table) : Module
48
49 member this.AddMemory(m: Memory) : Module
50
51 member this.AddGlobal(g: Global) : Module
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52
53 member this.AddGlobals(globals: list<Global >) : Module
54
55 member this.AddExport(e: Export) : Module
56
57 member this.AddData(d: Data) : Module
58
59 member this.Combine(m: Module) : Module

Static Members
1 static member (+)(wasm1: Module, wasm2: Module) : Module
2
3 static member (++)(wasm1: Module, wasm2: Module) : Module
4
5 static member (++)(instr: Commented <Instr.Wasm> list, wasm2: Module) : Module
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L Function restructuring and organization
This shows how functions are reorganized from the Hygge program in shown in code
snippet L.1 to the WAT module in code snippet L.2.

1 let f_outer: (int, int) -> int = fun(x: int, y: int) -> {
2 let f_inner: (int, int) -> int = fun(x: int, y: int) -> {
3 x + y + 2
4 };
5
6 f_inner(x, y)
7 };
8
9 assert(f_outer(1, 2) = 5)

Figure L.1: Organisation of functions in Hygge

1 ...
2 (func $_start (result i32)
3 ;; execution start here:
4 ...
5 i32.const 0 ;; exit code 0
6 return ;; return the exit code
7 )
8 (func $fun_f_inner (param $cenv i32) (param $x i32) (param $y i32) (result i32

) ;; function fun_f_inner
9 ...

10 )
11 (func $fun_f_outer (param $cenv i32) (param $x i32) (param $y i32) (result i32

) ;; function fun_f_outer
12 ...
13 )
14 ...

Figure L.2: Organisation of functions in WAT module
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M Example of Internal bump allocation
This Appendix shows an example of the WAT code that grows linear memory at runtime.

1 (if
2 (i32.ge_s ;; size need > current size
3 (i32.add ;; find size need to allocate
4 (global.get $heap_base) ;; get heap base
5 (i32.const 8) ;; size of struct
6 )
7 (i32.mul ;; find current size
8 (memory.size) ;; memory size
9 (i32.const 65536) ;; page size

10 )
11 )
12 (then
13 (drop ;; drop new size
14 (memory.grow ;; grow memory if needed
15 (i32.div_s ;; grow memory!
16 (i32.add ;; find size need to allocate
17 (global.get $heap_base) ;; get heap base
18 (i32.const 8) ;; size of struct
19 )
20 (i32.const 65536) ;; page size
21 )
22 )
23 )
24 )
25 )
26 (global.set $Sptr ;; set struct pointer var, have been hoisted
27 (global.get $heap_base) ;; leave current heap base address
28 (global.set $heap_base ;; set base pointer
29 (i32.add ;; add size to heap base
30 (global.get $heap_base) ;; get current heap base
31 (i32.const 8) ;; size of struct
32 )
33 )
34 )

Figure M.1: Internal bump allocation
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N Unrealized Endeavors
This section provides a synopsis of efforts not integrated into the project’s development.

N.1 Code generation exclusively for the linear writing style of
WAT

At the start of the project, the author of this thesis wanted to start generating code in
the simplest possible way. Therefore, it was decided that the code generation would
exclusively target the linear writing style of WAT. Later, the project’s scope was changed
to incorporate the folded writing style.

Changing the IR defined by WGF was necessary to accomplish this. The IR needed to
capture the instruction’s hierarchal relationship in order to produce the folded form.

This entailed an extensive rewrite of the code generation and all other functionality that
work with the WGF IR, such as the peephole optimizations.

The following sections exemplify how this change impacted the project.
N.1.0.1 Rewrite of peephole optimizations
In many scenarios, the peephole optimization code for the non­nested IR was significantly
simpler to work with and do pattern matching with. In code snippet N.1 is the implemen­
tation of the optimization described in section 6.3 before the IR was changed to preserve
the hierarchal relationship.

This can be compared with the code snippet presented in N.2, which achieves an identical
optimization. However, it is more intricate due to the fact that the pertinent instructions
are no longer situated in direct proximity to each other.

1 | (LocalTee (x, instrs), c) :: (Drop, _) :: rest ->
2 // should be a local.set
3 (LocalSet (x, instrs), c) :: optimizeInstr rest

Figure N.1: Optimisation code after the IR was nested

1 | (Drop(subTree), _) :: rest when isLocalTee (List.last subTree) ->
2 // match!, we can remove the drop
3 // and replace the local.tee with a local.set
4 let subTree' = List.take (List.length subTree - 1) subTree
5
6 match List.last subTree with
7 | (LocalTee (x, instrs), c) ->
8 let localSet = (LocalSet (x, instrs), c)
9 let rest' = optimizeInstr rest

10 subTree' @ [localSet] @ rest'
11 | _ -> failwith "should not happen"

Figure N.2: Optimisation code after the IR was nested
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The nested IR was an advantage when implementing the drop branch pruning since addi­
tional information the nesting provided made it trivial to identify what instructions produced
the value that had to be dropped. This process is described in 6.2.
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O Source code
HyggeWasm The source code of HyggeWasm is attached as the file: hyggeWasm­
Thesis.zip. This includes the HyggeC, WGF, and theWasmTimeDriver projects.

Development and Learning tool The source code of the Development and Learning
tool is attached as the file: Wasm­Debugger­Thesis.zip.

Compiled test programs All test programs are compiled, both ’.wat’ files and binary
’.wasm’ files can be found in the folder. They can all be found in the folder Compiled test
programs.
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