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Problem statement
1. How can high- level programming language features of Hygge be synthesized to the 

low- level constructs found in the target language of WebAssembly (Wasm)? 

2. Are there any specific limitations or challenges in the Hygge -to-Wasm compilation 

process, and what are the potential solutions or workarounds? 

3. How can the WebAssembly code be optimised, and how does the optimised code 

compare to the non- optimised version?
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Why?
Motivation and background

5



DTU Compute21 Feb 2024

Motivation
• WebAssembly shows great potential as a technology, 

consequently gaining momentum as a widely adopted 
compilation target.

• WebAssembly is a stack-based virtual ISA.
• With a secondary focus on teaching-related aspects.
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Related work
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Binaryen

Inspiration has been drawn from WebAssembly compiler toolchains and literature.
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What was achieved?
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Deliverables of the project
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A compiler with a back-end targeting WebAssembly, named HyggeWasm.

1. An intermediate representation of the WebAssembly (WAT) module and an algorithm 

for translation into the textual format.

2. A runtime for handling I/O and memory allocation in both C# and Typescript.

3. A web application that makes it easy to load, run and debug programs.
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Language feature highlights
• Functions

– Functions as first -class citizens
– Recursive functions 
– Anonymous functions 
– Closures (with shared mutable variable)

• Control flow 
– Pattern matching 
– If -then- else, 
– Loops (while-loop, for-loop and do-while-loop)

• Data structures 
– Structs 
– Arrays
– Discriminated union types  

• Logical operators with short-circuit evaluation
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Demonstration
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• Input/output of Hygge program
• Recursive functions 
• Learning and Development tool
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How was it achieved?
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General structure - Phases of the compiler
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General structure - Phases of code generation
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• Initial code generation produces a first draft of the code.
• Promotion of variables in the global scope of the Hygge program.
• Optionally optimisations are applied.
• Targets the WebAssembly text format (WAT).

✅ Valid Wasm program!
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General structure - Intermediate representation 
defined by WGF
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• Designed for easy manipulation of the symbolic code.
• Designed to be used in the optimisation stage.
• Allows for comments associated with one or multiple instructions.

* WGF (WAT Generation Framework)



DTU Compute21 Feb 2024

Key challenges
• Implementing non-trivial language features: 

– Functions as first-class citizens
– Recursive functions  
– Closures (with mutable shared variables) 
– Pattern matching
– And more…
 

• Enabling Input/Ouput of the compiled Hygge programs
• Memory allocation and management
• Assembler support 
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Code generation strategies (Operation modes)
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• System Interfaces
• HyggeSI (Hygge System Interface)
• WASI (Standard)

• Memory strategies
• Internal
• External
• Heap

• Writing Styles
• Linear
• Folded

Operation modes influence the strategy used for generating code.

Enabeling Input/Ouput of the compiled Hygge programs

Memory allocation and mangement

Assembler support 
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System interfaces
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• WASI (WebAssembly System Interface, standard)
• Read integer
• Write string

• HyggeSI (Hygge System Interface)
• Allocate memory block
• Read integer 
• Read floating point 
• Write integer
• Write floating point 
• Write string
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Code generation strategies (Operation modes)
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• System Interfaces
• HyggeSI (Hygge System interface)
• WASI (standard)

• Memory strategies
• Internal
• External
• Heap 

• Writing Styles
• Linear
• Folded

Operation modes influence the strategy used for generating code.
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Memory strategies (linear memory)
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• The external and internal modes operates on linear memory.
• Space for static data is allocated during compile time and is placed first in linear 

memory. 
• The Bump allocation algorithm is used to allocate memory blocks.
• In external mode, Bump allocation is implemented by the host system and in internal 

mode memory management is embedded into the generated code.
• The accessible memory space can be grown during runtime in both modes.
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Memory strategies (heap) 
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• Different memory model

• New type declarations

• New instructions

• The heap mode uses the WasmGC extension, this enables garbage collection.
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Code generation strategies (Operation modes)
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• System Interfaces
• HyggeSI (Hygge System Interface)
• WASI (standard)

• Memory strategies
• Internal
• External
• Heap 

• Writing Styles
• Linear
• Folded

Operation modes influence the strategy used for generating code.
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Writing styles
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The writing style changes the shape of the code significantly by using another syntax.
The writing style influence assembler support. 
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Evaluation
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Testing - methodology
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• Testing has followed a test driven development (TDD) methodology.  
• Hygge programs are written to test functionality.

Assert expressions check condition of the code, if the condition is false a trap is 
triggered, and the program terminates. 
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Testing
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• All language features have been tested.

• Most tests are written to target a specific 
feature.  

• Test suite 
– 212 test programs
– 1.040 of them target code generation
– The entire test suite has 1.203 distinct 

tests 

Merge sort
Bubble sort
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Optimisations (IR)
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• Local variable read  and  write optimisation 
• Dead -code elimination 
• Constant folding

– Branch -level tree shaking 

Optimisations are performed on the symbolic code (IR) and is implemented as peephole 
optimisations.
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Evaluation of optimisations
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The dataset was created by compiling all programs with and without optimisations 
applied and count the number of executable instructions in each program.  

A mean reduction of 14.62% measured by instruction count across all tests.

Constant folding stands out as the most impactful optimisation, contributing a 
12.36% reduction.
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Future work 
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• Full support for WasmGC 
• Improve dead-code elimination 
• Tail recursion optimisation 
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Key takeaways
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• Multiple non-trivial language features implemented: 
– Functions as first-class citizens
– Recursive functions  
– Closures with mutable shared variables 
– Pattern matching

• Multiple code generation strategies 
– Three memory management strategies and one of the few languages that utilize 

WasmGC at the moment.
– Supports two system interfaces to enable I/O. 
– Two writing styles.

• Robust testing of all features ✅
• The thesis addresses all the questions in the problem statement.
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Hygge - Insertion sort
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Hygge - Higher-order functions
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Hygge – Fibonacci (recursive functions)
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Hygge – Fibonacci (imperative)
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Hygge – Simple closure
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• i is captured
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Hygge - FizzBuzz
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Can run only using WASI features
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Variable promotion
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• Variables in the global scope of the Hygge program are promoted.
• The declaration of local variables are removed from the function level and added to the 

global section of module.
• All instructions operating on a variable is substituted with equivalent ones for global 

variables.
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Closures
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• Function signatures are rewritten to include cenv.

• Variable storage keeps track of where in the closure captured variables are stored.
– This is the offset storage type.

• Mutable variables are encapsulated in a struct so that the reference can be shared.
• Access to the mutable variable is rewritten to a field selection. 

• A function instance consists of the pair of index and closure environment.



DTU Compute21 Feb 2024

Hygge – Closure with shared mutable variable(s)
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Indirect calls in WebAssembly 
(Functions as first-class citizens)
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• A function is reduced to a index that can be stored in memory.
• Memory address is an offset (i32) in linear memory that can be parsed around. 
• An indirect call take a function type definetion and an index.
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Anonymous functions
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• An anonymous function is named based on the scope it is placed in.
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Loops
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• Loops use control structures and branch instructions.

• This is the skeleton of a while-loop:
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Stack management
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• The last element in a sequense of expressions is the return value.

• All other expressions that leave a value on the stack are discarded.

• Must be done to conform with result types of control structures.  
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Strings
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• Strings are placed in memory at module instantiation with a data string of 8-bit hex 
segments. 
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Combining modules
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Union type constructor and pattern matching 
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Arrays 
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Constant folding
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Pattern matching in WAT
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Language features
• Arithmetic operators (-, +, %, /, sqrt, max and min) 
• Logical operators (or, and, xor -  && and || (short-circuit evaluation)) 
• Relational operators (=, <, >, <= and >=)
• Variables (++var, var++, --var, var--, +=, -=, *=, /= and %=, var <- value) 
• Control flow (if -then- else, while-loop, for-loop and do-while-loop) 
• Data structures 

– Structs (Constructor, field access, assign field value)
– Tuples (Constructor, field access, assign field value)
– Arrays (Constructor, element access, assign element value, slice array)
– Discriminated union types  

• Functions (first -class citizens, recursive functions, anonymous functions and closures)
• Pattern matching 
• I/O (Read integer or float, Write integer, float, and string values to output stream) 
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