

=
—
—

I

Design and Implementation of a
WebAssembly Compiler Back-End

for the High-Level Programming Language Hygge

Troels Lund (s161791) S :
upervisors

Alceste Scalas

sl sl Radoslaw Jan Rowicki

21 Feb 2024 DTU Compute

=
=
—

i

Agenda

1. Problem statement
Why — Motivation and background
What — What was achieved

How — Design and implementation

o &~ O DN

Evaluation

21 Feb 2024 DTU Compute

=
—
—

i

Problem statement

1. How can high-level programming language features of Hygge be synthesized to the

low-level constructs found in the target language of WebAssembly (Wasm)?

2. Are there any specific limitations or challenges in the Hygge-to-Wasm compilation

process, and what are the potential solutions or workarounds?

3. How can the WebAssembly code be optimised, and how does the optimised code

compare to the non-optimised version?

21 Feb 2024 DTU Compute

=
=
—

i

-

Why?
Motivation and background

21 Feb 2024 DTU Compute

HE

Motivation

* WebAssembly shows great potential as a technology,
consequently gaining momentum as a widely adopted
compilation target.

Hyg[sl=

» WebAssembly is a stack-based virtual ISA.
» With a secondary focus on teaching-related aspects.

SM

21 Feb 2024 DTU Compute

=
=
—

i

Related work

Inspiration has been drawn from WebAssembly compiler toolchains and literature.

Binaryen
~“| emscripten AS

21 Feb 2024 DTU Compute

=
=
—

i

’ What was achieved?
7

21 Feb 2024 DTU Compute

=
—
—

i

Deliverables of the project

A compiler with a back-end targeting WebAssembly, named HyggeWasm.

1. An intermediate representation of the WebAssembly (WAT) module and an algorithm

for translation into the textual format.

2. Aruntime for handling I/O and memory allocation in both C# and Typescript.

3. Aweb application that makes it easy to load, run and debug programs.

21 Feb 2024 DTU Compute

=
=
—

i

Language feature highlights

* Functions
— Functions as first-class citizens
— Recursive functions
— Anonymous functions
— Closures (with shared mutable variable)
e Control flow
— Pattern matching
— If-then-else,
— Loops (while-loop, for-loop and do-while-loop)
e Data structures
— Structs
— Arrays
— Discriminated union types
» Logical operators with short-circuit evaluation

21 Feb 2024 DTU Compute

=
—
—

i

Demonstration

 Input/output of Hygge program
* Recursive functions
 Learning and Development tool

21 Feb 2024 DTU Compute

=
—
—

i

|

How was it achieved?

21 Feb 2024 DTU Compute

=
—
—

i

General structure - Phases of the compiler

Source -
Pioaram H{ Lexing }—»Token stream
Abstract
Type checking syntax tree Parsing
(AST)

Type : Target
annotated Code generation
AST program

21 Feb 2024 DTU Compute

=
—
—

i

General structure - Phases of code generation

AN

D

Type annotated

Initial
AST)

code generation

'
. Wasm WAT
Promotion of local S | Format IR to WAT - :
variables —> Optimisations > module » module file
(.wat)
|
Intermediate
representation
of WAT

* Initial code generation produces a first draft of the code.

* Promotion of variables in the global scope of the Hygge program. Valid Wasm program!
* Optionally optimisations are applied.

* Targets the WebAssembly text format (WAT).

21 Feb 2024 DTU Compute

=
=
—

i

General structure - Intermediate representation
defined by WGF

Module ()
.AddGlobal (("result", (I32, Mutable), (I32Const 0, "initialize to 0")))
.AddCode (
[(GlobalSet(
Named ("result"),
[(I32Add(
[(I32Const 5, "push 5 to stack")
(I32Const 6, "push 6 to stack") 1),
"add 5 and 6")]
)’

"store result in global variable")]

 Designed for easy manipulation of the symbolic code.
* Designed to be used in the optimisation stage.
 Allows for comments associated with one or multiple instructions.

* WGF (WAT Generation Framework)

21 Feb 2024 DTU Compute

=
=
—

i

Key challenges

* Implementing non-trivial language features:
— Functions as first-class citizens
— Recursive functions
— Closures (with mutable shared variables)
— Pattern matching
— And more...

+ Enabling Input/Ouput of the compiled Hygge programs &= General design challenges
 Memory allocation and management
» Assembler support

21 Feb 2024 DTU Compute

=
—
—

i

Code generation strategies (Operation modes)

e System Interfaces Enabeling Input/Ouput of the compiled Hygge programs
» HyggeSI (Hygge System Interface)
« WASI (Standard)

* Memory strategies Memory allocation and mangement
* Internal
- External
 Heap

e Writing Styles
* Linear
* Folded

Assembler support

Operation modes influence the strategy used for generating code.

21 Feb 2024 DTU Compute

=
—
—

i

System interfaces

 WASI (WebAssembly System Interface, standard) | :
* Read integer Wasm program
» Write string '

* HyggesSI (Hygge System Interface) HyggeWasm runtime
* Allocate memory block '
HyggeSlI

 Read integer 2 |

* Read floating point

 Write integer I/O capabilities Memory allocator
 Write floating point '

« Write string

21 Feb 2024 DTU Compute

=
—
—

i

Code generation strategies (Operation modes)

e System Interfaces
* HyggeSI (Hygge System interface)
+ WASI (standard)
 Memory strategies
 [nternal
« External
* Heap
e Writing Styles
* Linear
* Folded

Operation modes influence the strategy used for generating code.

21 Feb 2024 DTU Compute

=
=
—

i

Memory strategies (linear memory)

* The external and internal modes operates on linear memory.

» Space for static data is allocated during compile time and is placed first in linear
memory.

* The Bump allocation algorithm is used to allocate memory blocks.

* In external mode, Bump allocation is implemented by the host system and in internal
mode memory management is embedded into the generated code.

* The accessible memory space can be grown during runtime in both modes.

Dynamic data Empty space Empty space
Page 1 m Page 3 i
Static data Dynamic data
A
0 heap base heap end heap end

21 Feb 2024 DTU Compute

=
=
—

i

Memory strategies (heap)

* The heap mode uses the WasmGC extension, this enables garbage collection.

* Different memory model

* New type declarations Instruction | Description
struct.new | Create a new struct
* New instructions struct.get | Access a field in a struct

struct.set | Set a field in a struct
array.new | Create a new array

(type $s|i-i32|a-£32|b-1i32 (;0;) (struct
(field $i (mut i32))
(field $a (mut £32))
(field $b (mut i32))))

—_

(global $var_s (;2;) (mut
(ref null $s|i-i32|a-£32|b-i32))
(ref .null $s|i-i32]|a-£f32|b-i32))

21 Feb 2024 DTU Compute

=
—
—

i

Code generation strategies (Operation modes)

e System Interfaces
» HyggeSI (Hygge System Interface)
+ WASI (standard)
 Memory strategies
* Internal
« External
 Heap
e Writing Styles
* Linear
« Folded

Operation modes influence the strategy used for generating code.

21 Feb 2024 DTU Compute

=
—
—

i

Writing styles

The writing style changes the shape of the code significantly by using another syntax.
The writing style influence assembler support.

(global.set $var_c

global.get $var_a (i32.add

global.get $var_b (global.get $var_a)
i32.add (global.get $var_b)
global.set $var_c)

(a) Linear writing style
(b) Folded writing style

21 Feb 2024 DTU Compute

=
=
—

i

Evaluation

21 Feb 2024 DTU Compute

=
—
—

i

Testing - methodology

* Testing has followed a test driven development (TDD) methodology.
» Hygge programs are written to test functionality.

// creating a struct with the field 'f' with the value 3
let s: struct {f: int} = struct {f = 1 + 2};
s.f <- 5; // assign a new value to field 'f'

ﬁ assert(s.f = 5) // assert the value of field 'f' is now 5.

Assert expressions check condition of the code, if the condition is false a trap is
triggered, and the program terminates.

21 Feb 2024 DTU Compute

=
=
—

i

Testing

+ All language features have been tested. -

60 1

» Most tests are written to target a specific .|
feature.

Frequency
3
i

w
o
L

e Test suite
— 212 test programs
— 1.040 of them target code generation
— The entire test suite has 1.203 distinct hﬂ'lhﬂrm

, b =m = O = 1 , :
teStS 0 200 400 sﬁgtmctions (?:\?nt 1000 1200 1400

[12|

Bubble sort
Merge sort

21 Feb 2024 DTU Compute

=
=
—

i

Optimisations (IR)
 Local variable read and write optimisation @
* Dead-code elimination
» Constant folding
— Branch-level tree shaking @ @ Q

Optimisations are performed on the symbolic code (IR) and is implemented as peephole
optimisations.

21 Feb 2024 DTU Compute

=
—
—

i

Evaluation of optimisations

The dataset was created by compiling all programs with and without optimisations
applied and count the number of executable instructions in each program.

A mean reduction of 14.62% measured by instruction count across all tests.

Constant folding stands out as the most impactful optimisation, contributing a
12.36% reduction.

21 Feb 2024 DTU Compute

=
—
—

i

Future work

* Full support for WasmGC
* Improve dead-code elimination
« Tail recursion optimisation

21 Feb 2024 DTU Compute

=
—
—

i

Key takeaways

e Multiple non-trivial language features implemented:
— Functions as first-class citizens
— Recursive functions
— Closures with mutable shared variables
— Pattern matching

* Multiple code generation strategies

— Three memory management strategies and one of the few languages that utilize
WasmGC at the moment.

— Supports two system interfaces to enable 1/O.
— Two writing styles.

* Robust testing of all features
* The thesis addresses all the questions in the problem statement.

21 Feb 2024 DTU Compute

=
=
—

i

Hygge - Insertion sort

let insertionSort: (array{int}) -> unit = fun(arr: array{int}) -> {
let len: int = arraylLength(arr);
let mutable i: int = O0;

for (i <- 1; i < len; ++i) {
let key: int = arrayElem(arr, i);
let mutable j: int = i - 1;

// Move elements of arr[0..i-1] that are greater than key to one
position ahead of their current position
while (j >= 0 && (arrayElem(arr, j) > key)) do {
arrayElem(arr, j + 1) <- arrayElem(arr, j);
j<=3-1
}s

arrayElem(arr, j + 1) <- key

21 Feb 2024 DTU Compute

=
=
—

i

Hygge - Higher-order functions

fun doOperation(x: int, y: int, operation: (int, int) -> int): int = {
operation(x, y)

ks

fun add (a: int, b: int): int = {
a + b

¥

assert (doOperation(5, 3, add) = 8) // Output: 8

21 Feb 2024 DTU Compute

=
—
—

i

Hygge — Fibonacci (recursive functions)

// declare n as an integer and assign it the value 16
let n: int = 16;
// function to calculate the nth term of the Fibonacci sequence
fun fibRec(n: int): int = {
if (n <= 1) then {

n
}
else {

fibRec(n - 1) + fibRec(n - 2)
}

&
// print the result
println("The 16th term of the Fibonacci sequence is:");

println(fibRec(n))

21 Feb 2024 DTU Compute

=
—
—

i

Hygge — Fibonacci (imperative)

// Number of terms of the Fibonacci sequence to print (minimum 2).
let n: int = 16;

let mutable tO: int = O; // First term in the Fibonacci sequence
let mutable ti1: int = 1; // Second term in the Fibonacci sequence
println(t0);
println(tl);

let mutable i: int = 2; // Counter: how many terms we printed
let mutable next: int = 0; // Next term in the Fibonacci sequence

while (i < n) do {
next <= t0 + ti;
println(next) ;
t0 <- ti;
tl <- next;
i <-1i+ 1

21 Feb 2024 DTU Compute

=
=
—

i

Hygge — Simple closure

* jis captured

fun £(): () => int = {
let mutable i: int = 0;
fun () -> ¢
i++
}
it

let £f0: () =-> int = £();
assert (f0() = 0);
assert (f0() = 1)

21 Feb 2024 DTU Compute

=
=
—

i

Hygge - FizzBuzz

let mutable i: int
let mutable y: int

0;
readInt () ;

for ((); (i< y); i <=3+ 13) 4

let by3: bool
let by5: bool

(1% 3
(1 % 8

0);
0);

if (by3) then {
if (by5) then {
println("FizzBuzz")

¥
else {
println("Fizz")
}
}
else {
if (by5) then {
println ("Buzz")
}
else {
println (i)
}
3

Can run only using WASI features

21 Feb 2024 DTU Compute

=
—
—

i

Variable promotion

 Variables in the global scope of the Hygge program are promoted.

* The declaration of local variables are removed from the function level and added to the
global section of module.

« All instructions operating on a variable is substituted with equivalent ones for global
variables.

let x: int = 40; // <-- Variable x becomes global value
let £f: () -> int = fun() -> 40 + x; // <-- Accsess value of x

assert(f() = 80)

21 Feb 2024 DTU Compute

=
—
—

i

Closures
* Function signatures are rewritten to include cenv.

 Variable storage keeps track of where in the closure captured variables are stored.
— This is the offset storage type.

 Mutable variables are encapsulated in a struct so that the reference can be shared.
* Access to the mutable variable is rewritten to a field selection.

» A function instance consists of the pair of index and closure environment.

Linear memory

index index | cenv ptr p—>» Closure env

e e

21 Feb 2024 DTU Compute

=
—
—

i

Hygge — Closure with shared mutable variable(s)

type Counters = struct {increment: () -> int; decrement: () -> int};

// Return a structure with two functions that share a counter. | e e mm e m——m————————
// The 'count' is initialized to O.

Linear memory
// The 'count' can be either incremented or decremented

fun makeCounters(): Counters = { i :
let mutable count: int = 0; // The mutable variable 'count' | :
Value: 0

// The lambda terms below capture 'count' twice : :
struct { increment = fun () -> { count <- count + 1 }; : :
decrement = fun () -> { count <- count - 1 } } : Counters E E

+; : :
// create a counter : :
let cl: Counters = makeCounters(); : cenvy cenv4)
assert(cl.increment() = 1); ; E
assert(cl.increment() = 2); e T T R :

// create a counter more
let c2: Counters = makeCounters();
assert(c2.increment() = 1); // Output: 1 (independent of c1)

assert(c2.increment () = 2);
assert (c2.decrement () = 1);
assert(c2.decrement () = 0)

21 Feb 2024 DTU Compute

=
=
—

i

Indirect calls in WebAssembly
(Functions as first-class citizens)

» A function is reduced to a index that can be stored in memory.
* Memory address is an offset (i32) in linear memory that can be parsed around.
* An indirect call take a function type definetion and an index.

Table section
func_table functions section code section
- P> 0 > f1 —>
1 > fo —>
2 P > f3 —>

/ 'w

Elements of the table

Stack

Actual instructions of the

== »| index of function f1 function

EEEEEEE call_indirect ~ ----:

21 Feb 2024 DTU Compute

=
—
—

i

Anonymous functions

* An anonymous function is named based on the scope it is placed in.

fun sum(a: int): (int) -> (int) -> int = { // <-- Named "$fun_sum"
fun (b: dmt) —-> 4 // <-- Named "$fun_sum/anonymous"

fun (c: int) -> { // <-- Named "$fun_sum/anonymous/anonymous"
a+b+c

}

21 Feb 2024 DTU Compute

=
—
—

i

Loops

» Loops use control structures and branch instructions.

* This is the skeleton of a while-loop:

(block $loop_exit
(loop $loop_begin

(br_if $loop_exit ;; if false break

(i32.eqz ;; evaluate loop condition

;; the condition itself

)
)
;5 the loop body
(br $loop_begin) ;; jump to the beginning of
the loop

)

21 Feb 2024 DTU Compute

=
—
—

i

Stack management
* The last element in a sequense of expressions is the return value.
 All other expressions that leave a value on the stack are discarded.

» Must be done to conform with result types of control structures.

fun f(arr: array {int}, i: int): array {int} = {
if (i < arrayLength(arr)) then { // <-- Result type of (i32)
arrayElem(arr, i) <- i + 1; // <-- Push i32 value
f(arr, i + 1) // <-- Function will push address (i32)
}
else {
arr // <-- Push i32 value
}
s

21 Feb 2024 DTU Compute

=
—
—

i

Strings

 Strings are placed in memory at module instantiation with a data string of 8-bit hex
segments.

Memory

Data addr | Size in bytes | Length

"This is the actual

i string data"

(data (i32.const 0) "\0c\00\00\00\12\00\00\00\12\00\00\0O0")
(data (i32.const 12) "hygge println test")

(data (i32.comnst 30) "\2a\00\00\00\10\00\00\00\10\00\00\00") Dynamic data
(data (i32.const 42) "hygge print test")

(data (i32.const 101) "\71\00\00\00\03\00\00\00\01\00\00\00O")
(data (i32.const 113) "0x2705") ;; Unicode Character "U+2705"

21 Feb 2024 DTU Compute

=
—
—

i

Combining modules

| StringLength e ->

let m' = doCodegen env e m
m'
.ResetAccCode ()
.AddCode ([(I32Load_(None, Some(8), m'.GetAccCode()),
) 1)

21 Feb 2024 DTU Compute

=
—
—

i

Union type constructor and pattern matching

type t = union {
Some: int;
None: unit

i

// union-type constructor
let x: t = Some{42};
let n: t = None{()};

match x with {
Some{v} -> println(v);
None{_} -> println("None")

21 Feb 2024 DTU Compute

=
—
—

i

Arrays

21 Feb 2024 DTU Compute

iun I\arr. array =i1iantsr, 1. 1nt). array i1intsy = 1 // Irecursive 1l1unction
if (i < arraylLength(arr)) then { // read length of array as part of
condition
arrayElem(arr, i) <- i + 1; // assign value to array element
f(arr, i + 1) // recursive function call

}
else {

arr // return modified array
i

¥;
f(arr, x / 2); // modified array returned
X <= 0; // reset x

do { // do-while to print array data
println(arrayElem(arr, x)); // read array element
x <- x + 1 // increment
} while (x < arrayLength(arr)); // read length of array as part of condition

println(" -------------------------- "y ;

let sliced: array {int} = arraySlice(arr, x / 2, arraylLength(arr)); // slice
array in half

x: <= 03

do { // do-while to print array data
println(arrayElem(sliced, x)); // read array element
x <- x + 1 // increment

} while (x < arrayLength(sliced)); // read length of array as part of
condition

type OptionalArray = union { // read length of array as part of condition
Some: arrav {int}:

=
—
—

i

Constant folding

(func $_start (;0;)
;; execution start here:

(if

invert assertion
check

(i32.eqz ;;
(i32.6q ;:
(i32.add
(i32.add ;; <-- become 'i32.const 9'

(i32.const 4) ;; push 4 on stack

(i32.const 5) ;; push 5 on stack

equality

)
(i32.const 3) ;;

)
(i32.const 12) ;;

push 3 on stack

push 12 on stack

)
(then
(global.set $exit_code ;; set exit code
(i32.const 42) ;; error exit code push to stack

)

(unreachable) ;; exit program

)

)

if execution reaches here, the program is successful

Figure 6.8: Before constant fold

(func $_start (;0;)
execution start here:

3

(1f
(i32.const 0) ;; condition
(then
(global.set $exit_code ;; set exit code
(i32.const 42) ;; error exit code push to stack
)
(unreachable) ;; exit program
)
)

the program is successful

if execution reaches here,

.« .
L

)

=
—
—

oo
oo
oo

Pattern matching in WAT

(block $match_end (result i32) ;; <-- result type of the block
;; case for id: $1, label: Some
(if
(i32.eq ;; check if index is equal to target
(i32.10ad ;; load label
(global.get $var_x) ;; get local var: var_x, have been promoted
)
(i32.const 1) ;; put label id 1 on stack
)
(then
(global.set $match_var_x ;; set local var, have been promoted
(i32.1l0ad offset=4
(global.get $var_x) ;; get local var: var_x, have been promoted
)
)
(global.set $var_i ;; set local var, have been promoted
(i32.add
(global.get $match_var_x) ;; get local var: match_var_x, have been
promoted
(i32.const 1) ;; push 1 on stack

)

=
—
—

i

Language features

e Arithmetic operators (-, +, %, /, sqrt, max and min)
» Logical operators (or, and, xor - && and || (short-circuit evaluation))
* Relational operators (=, <, >, <= and >=)
e Variables (++var, var++, --var, var--, +=, -=, *= /= and %=, var <- value)
e Control flow (if-then-else, while-loop, for-loop and do-while-loop)
e Data structures
— Structs (Constructor, field access, assign field value)
— Tuples (Constructor, field access, assign field value)
— Arrays (Constructor, element access, assign element value, slice array)
— Discriminated union types
* Functions (first-class citizens, recursive functions, anonymous functions and closures)
e Pattern matching
 I/O (Read integer or float, Write integer, float, and string values to output stream)

21 Feb 2024 DTU Compute

