
1

21/02 2024

DTU Compute21 Feb 2024

Design and Implementation of a
WebAssembly Compiler Back-End
for the High-Level Programming Language Hygge

2

Master Thesis

Troels Lund (s161791)
Supervisors
Alceste Scalas
Radoslaw Jan Rowicki

DTU Compute21 Feb 2024

Agenda
1. Problem statement

2. Why – Motivation and background

3. What – What was achieved

4. How – Design and implementation

5. Evaluation

3

DTU Compute21 Feb 2024

Problem statement
1. How can high- level programming language features of Hygge be synthesized to the

low- level constructs found in the target language of WebAssembly (Wasm)?

2. Are there any specific limitations or challenges in the Hygge -to-Wasm compilation

process, and what are the potential solutions or workarounds?

3. How can the WebAssembly code be optimised, and how does the optimised code

compare to the non- optimised version?

4

DTU Compute21 Feb 2024

Why?
Motivation and background

5

DTU Compute21 Feb 2024

Motivation
• WebAssembly shows great potential as a technology,

consequently gaining momentum as a widely adopted
compilation target.

• WebAssembly is a stack-based virtual ISA.
• With a secondary focus on teaching-related aspects.

6

SM

DTU Compute21 Feb 2024

Related work

7

Binaryen

Inspiration has been drawn from WebAssembly compiler toolchains and literature.

DTU Compute21 Feb 2024

What was achieved?

8

DTU Compute21 Feb 2024

Deliverables of the project

9

A compiler with a back-end targeting WebAssembly, named HyggeWasm.

1. An intermediate representation of the WebAssembly (WAT) module and an algorithm

for translation into the textual format.

2. A runtime for handling I/O and memory allocation in both C# and Typescript.

3. A web application that makes it easy to load, run and debug programs.

DTU Compute21 Feb 2024

Language feature highlights
• Functions

– Functions as first -class citizens
– Recursive functions
– Anonymous functions
– Closures (with shared mutable variable)

• Control flow
– Pattern matching
– If -then- else,
– Loops (while-loop, for-loop and do-while-loop)

• Data structures
– Structs
– Arrays
– Discriminated union types

• Logical operators with short-circuit evaluation

10

DTU Compute21 Feb 2024

Demonstration

11

• Input/output of Hygge program
• Recursive functions
• Learning and Development tool

DTU Compute21 Feb 2024

How was it achieved?

12

DTU Compute21 Feb 2024

General structure - Phases of the compiler

13

DTU Compute21 Feb 2024

General structure - Phases of code generation

14

• Initial code generation produces a first draft of the code.
• Promotion of variables in the global scope of the Hygge program.
• Optionally optimisations are applied.
• Targets the WebAssembly text format (WAT).

✅ Valid Wasm program!

DTU Compute21 Feb 2024

General structure - Intermediate representation
defined by WGF

15

• Designed for easy manipulation of the symbolic code.
• Designed to be used in the optimisation stage.
• Allows for comments associated with one or multiple instructions.

* WGF (WAT Generation Framework)

DTU Compute21 Feb 2024

Key challenges
• Implementing non-trivial language features:

– Functions as first-class citizens
– Recursive functions
– Closures (with mutable shared variables)
– Pattern matching
– And more…

• Enabling Input/Ouput of the compiled Hygge programs
• Memory allocation and management
• Assembler support

16

General design challenges

DTU Compute21 Feb 2024

Code generation strategies (Operation modes)

17

• System Interfaces
• HyggeSI (Hygge System Interface)
• WASI (Standard)

• Memory strategies
• Internal
• External
• Heap

• Writing Styles
• Linear
• Folded

Operation modes influence the strategy used for generating code.

Enabeling Input/Ouput of the compiled Hygge programs

Memory allocation and mangement

Assembler support

DTU Compute21 Feb 2024

System interfaces

18

• WASI (WebAssembly System Interface, standard)
• Read integer
• Write string

• HyggeSI (Hygge System Interface)
• Allocate memory block
• Read integer
• Read floating point
• Write integer
• Write floating point
• Write string

DTU Compute21 Feb 2024

Code generation strategies (Operation modes)

19

• System Interfaces
• HyggeSI (Hygge System interface)
• WASI (standard)

• Memory strategies
• Internal
• External
• Heap

• Writing Styles
• Linear
• Folded

Operation modes influence the strategy used for generating code.

DTU Compute21 Feb 2024

Memory strategies (linear memory)

20

• The external and internal modes operates on linear memory.
• Space for static data is allocated during compile time and is placed first in linear

memory.
• The Bump allocation algorithm is used to allocate memory blocks.
• In external mode, Bump allocation is implemented by the host system and in internal

mode memory management is embedded into the generated code.
• The accessible memory space can be grown during runtime in both modes.

DTU Compute21 Feb 2024

Memory strategies (heap)

21

• Different memory model

• New type declarations

• New instructions

• The heap mode uses the WasmGC extension, this enables garbage collection.

DTU Compute21 Feb 2024

Code generation strategies (Operation modes)

22

• System Interfaces
• HyggeSI (Hygge System Interface)
• WASI (standard)

• Memory strategies
• Internal
• External
• Heap

• Writing Styles
• Linear
• Folded

Operation modes influence the strategy used for generating code.

DTU Compute21 Feb 2024

Writing styles

23

The writing style changes the shape of the code significantly by using another syntax.
The writing style influence assembler support.

DTU Compute21 Feb 2024

Evaluation

24

DTU Compute21 Feb 2024

Testing - methodology

25

• Testing has followed a test driven development (TDD) methodology.
• Hygge programs are written to test functionality.

Assert expressions check condition of the code, if the condition is false a trap is
triggered, and the program terminates.

DTU Compute21 Feb 2024

Testing

26

• All language features have been tested.

• Most tests are written to target a specific
feature.

• Test suite
– 212 test programs
– 1.040 of them target code generation
– The entire test suite has 1.203 distinct

tests

Merge sort
Bubble sort

DTU Compute21 Feb 2024

Optimisations (IR)

27

• Local variable read and write optimisation
• Dead -code elimination
• Constant folding

– Branch -level tree shaking

Optimisations are performed on the symbolic code (IR) and is implemented as peephole
optimisations.

DTU Compute21 Feb 2024

Evaluation of optimisations

28

The dataset was created by compiling all programs with and without optimisations
applied and count the number of executable instructions in each program.

A mean reduction of 14.62% measured by instruction count across all tests.

Constant folding stands out as the most impactful optimisation, contributing a
12.36% reduction.

DTU Compute21 Feb 2024

Future work

29

• Full support for WasmGC
• Improve dead-code elimination
• Tail recursion optimisation

DTU Compute21 Feb 2024

Key takeaways

30

• Multiple non-trivial language features implemented:
– Functions as first-class citizens
– Recursive functions
– Closures with mutable shared variables
– Pattern matching

• Multiple code generation strategies
– Three memory management strategies and one of the few languages that utilize

WasmGC at the moment.
– Supports two system interfaces to enable I/O.
– Two writing styles.

• Robust testing of all features ✅
• The thesis addresses all the questions in the problem statement.

31

DTU Compute21 Feb 2024

Hygge - Insertion sort

32

DTU Compute21 Feb 2024

Hygge - Higher-order functions

33

DTU Compute21 Feb 2024

Hygge – Fibonacci (recursive functions)

34

DTU Compute21 Feb 2024

Hygge – Fibonacci (imperative)

35

DTU Compute21 Feb 2024

Hygge – Simple closure

36

• i is captured

DTU Compute21 Feb 2024

Hygge - FizzBuzz

37

Can run only using WASI features

DTU Compute21 Feb 2024

Variable promotion

38

• Variables in the global scope of the Hygge program are promoted.
• The declaration of local variables are removed from the function level and added to the

global section of module.
• All instructions operating on a variable is substituted with equivalent ones for global

variables.

DTU Compute21 Feb 2024

Closures

39

• Function signatures are rewritten to include cenv.

• Variable storage keeps track of where in the closure captured variables are stored.
– This is the offset storage type.

• Mutable variables are encapsulated in a struct so that the reference can be shared.
• Access to the mutable variable is rewritten to a field selection.

• A function instance consists of the pair of index and closure environment.

DTU Compute21 Feb 2024

Hygge – Closure with shared mutable variable(s)

40

DTU Compute21 Feb 2024

Indirect calls in WebAssembly
(Functions as first-class citizens)

41

• A function is reduced to a index that can be stored in memory.
• Memory address is an offset (i32) in linear memory that can be parsed around.
• An indirect call take a function type definetion and an index.

DTU Compute21 Feb 2024

Anonymous functions

42

• An anonymous function is named based on the scope it is placed in.

DTU Compute21 Feb 2024

Loops

43

• Loops use control structures and branch instructions.

• This is the skeleton of a while-loop:

DTU Compute21 Feb 2024

Stack management

44

• The last element in a sequense of expressions is the return value.

• All other expressions that leave a value on the stack are discarded.

• Must be done to conform with result types of control structures.

DTU Compute21 Feb 2024

Strings

45

• Strings are placed in memory at module instantiation with a data string of 8-bit hex
segments.

DTU Compute21 Feb 2024

Combining modules

46

DTU Compute21 Feb 2024

Union type constructor and pattern matching

47

DTU Compute21 Feb 2024

Arrays

48

DTU Compute21 Feb 2024

Constant folding

49

DTU Compute21 Feb 2024

Pattern matching in WAT

50

DTU Compute21 Feb 2024

Language features
• Arithmetic operators (-, +, %, /, sqrt, max and min)
• Logical operators (or, and, xor - && and || (short-circuit evaluation))
• Relational operators (=, <, >, <= and >=)
• Variables (++var, var++, --var, var--, +=, -=, *=, /= and %=, var <- value)
• Control flow (if -then- else, while-loop, for-loop and do-while-loop)
• Data structures

– Structs (Constructor, field access, assign field value)
– Tuples (Constructor, field access, assign field value)
– Arrays (Constructor, element access, assign element value, slice array)
– Discriminated union types

• Functions (first -class citizens, recursive functions, anonymous functions and closures)
• Pattern matching
• I/O (Read integer or float, Write integer, float, and string values to output stream)

51

